
IA-32 architecture
coherency

serializing instructions and events

doc? #1 instruction or event 486? #2 use? #3 description and comments
yes IRET(D) yes yes may be privileged under some circumstances
yes RSM yes yes can only be executed from within SMM
yes CPUID no no non-privileged
yes LGDT Ms no no privileged
yes LIDT Ms no no privileged
yes LLDT Ew no no privileged
yes LTR Ew no no privileged
yes INVLPG M no no privileged, implemented badly in Intel P5 and P54
yes INVD no no privileged, does not write back cache contents
yes WBINVD yes yes privileged
no LMSW Ew yes no privileged
yes MOV CR0,Rd yes yes privileged
yes MOV CR2,Rd no no privileged
yes MOV CR3,Rd no no privileged
yes MOV CR4,Rd no no privileged
yes MOV DR0..7,Rd yes yes privileged
yes WRMSR n/a yes privileged
yes SFENCE n/a yes non-privileged, but requires SSE
yes MFENCE n/a yes non-privileged, but requires SSE2
yes LFENCE n/a yes non-privileged, but requires SSE2
yes RDTSCP n/a no privileged if CR4.TSD=1, and requires TSCP

no exceptions #4 yes no incl. INT Ib, INT1, INT3, INTO (taken), BOUND (taken)

no interrupts #4 yes no INTR, NMI, SMI, INIT
no branches yes no CALL Ap/Ep/Ev/Jv, RET, RET Iw, RETF, RETF Iw

JMP Ap/Ep/Ev/Jv/Jb, Jcc Jb/Jv (taken), JCXZ
LOOP, LOOPE, LOOPNE

no segment loads no no LDS/LES/LFS/LGS/LSS Gv,MP
POP DS/ES/FS/GS/SS
MOV Sw,Ew

no A20M# changes #5 yes no KBC or PS/2

notes description
#1 Only the documented instructions and events are guaranteed to be serializing on future IA-32 processors.
#2 Serializing instructions and events were defined and documented starting with Intel's P5-core processors.
#3 To ensure backward compatibility it is not recommended to use these. (This depends on #1 and #2.)
#4 The nature of the IA-32 architecture implies that these instructions and events are serializing.
#5 In case of an OUTS instruction serialization isn't guaranteed until all iterations have been completed.

TLB invalidation

l writes to CR3 #1
l changes to CR3 during a task switch #1
l changes to CR0.PE
l changes to CR0.PG #2
l changes to CR4.PSE (if PSE is supported) #2
l changes to CR4.PGE (if PGE is supported)

PDPTE-to-PDPTR reloading

l writes to CR3 #1
l changes to CR3 during a task switch #1, #2
l a 0-to-1 change of CR0.PG while CR4.PAE=1 #3
l a 0-to-1 change of CR4.PAE while CR0.PG=1 #3
l changes to CR4.PSE (if PSE is supported) #4
l changes to CR4.PGE (if PGE is supported) #4

Page 1 of 2sandpile.org -- IA-32 architecture -- coherency

2005-12-08http://www.sandpile.org/ia32/coherent.htm

http://www.sandpile.org/ia32/coherent.htm

l changes to CR4.PAE (if PAE is supported)
l INVLPG M instruction
l RSM instruction
l writes to MTRRs (if MTRRs are supported)
l writes to PAT MSR (if PAT is supported)
l writes to APIC_BASE MSR (if APIC is supported)
l SMI #3
l A20M# changes #4

notes description
#1 global entries remain if PGE is supported
#2 not on Intel P5-core processors
#3 if TLB is used to implement SMM remapping
#4 if TLB is used to implement A20M#

l RSM instruction #5

notes description
#1 while CR0.PG=1 and CR4.PAE=1
#2 Intel P4-core processors always reload

#3 a 1-to-0 change should set the PDPTRs to
zero

#4 unnecessary, but done by Intel processors
#5 SMI should save the PDPTRs in the SSM,

and then set them to zero (P6 doesn't, but P4
does)

store buffer draining

l processor exceptions and external interrupts
l serializing instructions (see above)
l I/O instructions (IN, (REP) INS, OUT, (REP)

OUTS)
l LOCKed operations (explicit and implicit)
l SFENCE instruction (if SSE is supported)
l MFENCE instruction (if SSE2 is supported)
l reads from memory regions that are marked UC

MTRR conflicts

 UC WC WT WP WB

UC UC UC UC UC UC
WC UC WC UC WC UC
WT UC UC WT WT WT
WP UC WC WT WP WT
WB UC UC WT WT WB
note Because the behavior of the gray

cases is reserved, it should not be
relied upon. In essence the processor
computes the logical AND of all the
involved memory types, as shown in
this table.

MTRR-PAT conflicts

PAT

UC WC WT WP WB UC-

M
T
R
R
s

UC UC_M #1 UC_M UC_M UC_M UC_M
WC UC_P WC UC UC WC WC
WT UC_P WC WT #2 WT UC_P
WP UC_P WC #2 WP WP UC_P
WB UC_P WC WT WP WB UC_P

notes description
#1 From an architectural standpoint the

processor should honour
MTRR_DEF_TYPE.E. While set to 0 the
MTRRs are disabled, memory should be
treated as UC, and PAT=WC should not be
able to take precedence; thus the result
should be UC_M. However, while set to 1 the
MTRRs are enabled, and PAT=WC should be
able to take precedence; thus the result
should be WC. While Intel processors do
honour the E bit, AMD processors do not -- for
them PAT=WC always takes predence; thus
their result is always WC.

#2 Because the behavior of this particular case is
reserved, it shouldn't be relied upon. While
Intel processors compute the logical AND,
resulting in WT, AMD processors treat this
combination as explicitly illegal, resulting in
UC.

Page 2 of 2sandpile.org -- IA-32 architecture -- coherency

2005-12-08http://www.sandpile.org/ia32/coherent.htm

http://www.sandpile.org/ia32/coherent.htm

