
up: Chapter 17 -- 80386 Instruction Set
prev: 17.1 Operand Size and Address-Size Attributes
next: AAA ASCII Adjust after Addition

17.2 Instruction Format
All instruction encodings are subsets of the general instruction format shown in Figure 17-1 .
Instructions consist of optional instruction prefixes, one or two primary opcode bytes, possibly an
address specifier consisting of the ModR/M byte and the SIB (Scale Index Base) byte, a
displacement, if required, and an immediate data field, if required.

Smaller encoding fields can be defined within the primary opcode or opcodes. These fields define
the direction of the operation, the size of the displacements, the register encoding, or sign extension;
encoding fields vary depending on the class of operation.

Most instructions that can refer to an operand in memory have an addressing form byte following the
primary opcode byte(s). This byte, called the ModR/M byte, specifies the address form to be used.
Certain encodings of the ModR/M byte indicate a second addressing byte, the SIB (Scale Index
Base) byte, which follows the ModR/M byte and is required to fully specify the addressing form.

Addressing forms can include a displacement immediately following either the ModR/M or SIB
byte. If a displacement is present, it can be 8-, 16- or 32-bits.

If the instruction specifies an immediate operand, the immediate operand always follows any
displacement bytes. The immediate operand, if specified, is always the last field of the instruction.

The following are the allowable instruction prefix codes:

 F3H REP prefix (used only with string instructions) F3H REPE/REPZ prefix (used only with string instructions F2H

The following are the segment override prefixes:

 2EH CS segment override prefix 36H SS segment override prefix 3EH DS segment override prefix 26H ES segment override prefix 64H FS segment override prefix 65H GS segment override prefix 66H Operand

17.2.1 ModR/M and SIB Bytes

Page 1 of 980386 Programmer's Reference Manual -- Section 17.2

2005-12-10http://i386.cybersabotage.com/s17_02.html

http://i386.cybersabotage.com/s17_02.html

The ModR/M and SIB bytes follow the opcode byte(s) in many of the 80386 instructions. They
contain the following information:

l The indexing type or register number to be used in the instruction
l The register to be used, or more information to select the instruction
l The base, index, and scale information

The ModR/M byte contains three fields of information:

l The mod field, which occupies the two most significant bits of the byte, combines with the r/m
field to form 32 possible values: eight registers and 24 indexing modes

l The reg field, which occupies the next three bits following the mod field, specifies either a
register number or three more bits of opcode information. The meaning of the reg field is
determined by the first (opcode) byte of the instruction.

l The r/m field, which occupies the three least significant bits of the byte, can specify a register
as the location of an operand, or can form part of the addressing-mode encoding in
combination with the field as described above

The based indexed and scaled indexed forms of 32-bit addressing require the SIB byte. The presence
of the SIB byte is indicated by certain encodings of the ModR/M byte. The SIB byte then includes
the following fields:

l The ss field, which occupies the two most significant bits of the byte, specifies the scale factor
l The index field, which occupies the next three bits following the ss field and specifies the

register number of the index register
l The base field, which occupies the three least significant bits of the byte, specifies the register

number of the base register

Figure 17-2 shows the formats of the ModR/M and SIB bytes. The values and the corresponding
addressing forms of the ModR/M and SIB bytes are shown in Tables 17-2, 17-3, and 17-4. The 16-
bit addressing forms specified by the ModR/M byte are in Table 17-2. The 32-bit addressing forms
specified by ModR/M are in Table 17-3. Table 17-4 shows the 32-bit addressing forms specified by
the SIB byte

 Table 17-2. 16-Bit Addressing Forms with the ModR/M Byter8(/r) AL CL DL BL AH CH DH BHr16(/r) AX CX DX BX SP BP SI DIr32(/r) EAX ECX EDX EBX ESP EBP ESI EDI

Notes

disp8 denotes an 8-bit displacement following the ModR/M byte, to be sign-extended and added to
the index. disp16 denotes a 16-bit displacement following the ModR/M byte, to be added to the
index. Default segment register is SS for the effective addresses containing a BP index, DS for other
effective addresses.

Page 2 of 980386 Programmer's Reference Manual -- Section 17.2

2005-12-10http://i386.cybersabotage.com/s17_02.html

http://i386.cybersabotage.com/s17_02.html

 Table 17-3. 32-Bit Addressing Forms with the ModR/M Byter8(/r) AL CL DL BL AH CH DH BHr16(/r) AX CX DX BX SP BP SI DIr32(/r) EAX ECX EDX EBX ESP EBP ESI EDI

Notes

[--] [--] means a SIB follows the ModR/M byte. disp8 denotes an 8-bit displacement following the
SIB byte, to be sign-extended and added to the index. disp32 denotes a 32-bit displacement following
the ModR/M byte, to be added to the index.

 Table 17-4. 32-Bit Addressing Forms with the SIB Byte r32 EAX ECX EDX EBX ESP [*] Base = 0 1 2 3 4 5 6 7 Base = 000 001 010 011 100 101 110 111+Scaled Inde

Notes

[*] means a disp32 with no base if MOD is 00, [ESP] otherwise. This provides the following
addressing modes:

 disp32[index] (MOD=00) disp8[EBP][index] (MOD=01) disp32[EBP][index] (MOD=10)

17.2.2 How to Read the Instruction Set Pages
The following is an example of the format used for each 80386 instruction description in this
chapter:

CMC -- Complement Carry Flag

 Opcode Instruction Clocks DescriptionF5 CMC 2 Complement carry flag

The above table is followed by paragraphs labelled "Operation," "Description," "Flags Affected,"
"Protected Mode Exceptions," "Real Address Mode Exceptions," and, optionally, "Notes." The
following sections explain the notational conventions and abbreviations used in these paragraphs of
the instruction descriptions.

17.2.2.1 Opcode

The "Opcode" column gives the complete object code produced for each form of the instruction.
When possible, the codes are given as hexadecimal bytes, in the same order in which they appear in
memory. Definitions of entries other than hexadecimal bytes are as follows:

/digit:
(digit is between 0 and 7) indicates that the ModR/M byte of the instruction uses only the r/m
(register or memory) operand. The reg field contains the digit that provides an extension to the
instruction's opcode.

/r:
indicates that the ModR/M byte of the instruction contains both a register operand and an r/m
operand.

cb, cw, cd, cp:
a 1-byte (cb), 2-byte (cw), 4-byte (cd) or 6-byte (cp) value following the opcode that is used to
specify a code offset and possibly a new value for the code segment register.

ib, iw, id:
a 1-byte (ib), 2-byte (iw), or 4-byte (id) immediate operand to the instruction that follows the
opcode, ModR/M bytes or scale-indexing bytes. The opcode determines if the operand is a
signed value. All words and doublewords are given with the low-order byte first.

+rb, +rw, +rd:
a register code, from 0 through 7, added to the hexadecimal byte given at the left of the plus

Page 3 of 980386 Programmer's Reference Manual -- Section 17.2

2005-12-10http://i386.cybersabotage.com/s17_02.html

http://i386.cybersabotage.com/s17_02.html

sign to form a single opcode byte. The codes are

 rb rw rd AL = 0 AX = 0 EAX = 0 CL = 1 CX = 1 ECX = 1 DL = 2 DX = 2 EDX = 2 BL = 3 BX = 3 EBX = 3 AH = 4 SP = 4 ESP = 4 CH = 5 BP = 5 EBP = 5 DH = 6 SI = 6 ESI =

17.2.2.2 Instruction

The "Instruction" column gives the syntax of the instruction statement as it would appear in an
ASM386 program. The following is a list of the symbols used to represent operands in the
instruction statements:

rel8:
a relative address in the range from 128 bytes before the end of the instruction to 127 bytes
after the end of the instruction.

rel16, rel32:
a relative address within the same code segment as the instruction assembled. rel16 applies to
instructions with an operand-size attribute of 16 bits; rel32 applies to instructions with an
operand-size attribute of 32 bits.

ptr16:16, ptr16:32:
a FAR pointer, typically in a code segment different from that of the instruction. The notation
16:16 indicates that the value of the pointer has two parts. The value to the right of the colon is
a 16-bit selector or value destined for the code segment register. The value to the left
corresponds to the offset within the destination segment. ptr16:16 is used when the
instruction's operand-size attribute is 16 bits; ptr16:32 is used with the 32-bit attribute.

r8:
one of the byte registers AL, CL, DL, BL, AH, CH, DH, or BH.

r16:
one of the word registers AX, CX, DX, BX, SP, BP, SI, or DI.

r32:
one of the doubleword registers EAX, ECX, EDX, EBX, ESP, EBP, ESI, or EDI.

imm8:
an immediate byte value. imm8 is a signed number between -128 and +127 inclusive. For
instructions in which imm8 is combined with a word or doubleword operand, the immediate
value is sign-extended to form a word or doubleword. The upper byte of the word is filled with
the topmost bit of the immediate value.

imm16:
an immediate word value used for instructions whose operand-size attribute is 16 bits. This is a
number between -32768 and +32767 inclusive.

imm32:
an immediate doubleword value used for instructions whose operand-size attribute is 32-bits.
It allows the use of a number between +2147483647 and -2147483648.

r/m8:
a one-byte operand that is either the contents of a byte register (AL, BL, CL, DL, AH, BH,
CH, DH), or a byte from memory.

r/m16:
a word register or memory operand used for instructions whose operand-size attribute is 16
bits. The word registers are: AX, BX, CX, DX, SP, BP, SI, DI. The contents of memory are
found at the address provided by the effective address computation.

r/m32:
a doubleword register or memory operand used for instructions whose operand-size attribute is
32-bits. The doubleword registers are: EAX, EBX, ECX, EDX, ESP, EBP, ESI, EDI. The
contents of memory are found at the address provided by the effective address computation.

m8:
a memory byte addressed by DS:SI or ES:DI (used only by string instructions).

m16:

Page 4 of 980386 Programmer's Reference Manual -- Section 17.2

2005-12-10http://i386.cybersabotage.com/s17_02.html

http://i386.cybersabotage.com/s17_02.html

a memory word addressed by DS:SI or ES:DI (used only by string instructions).
m32:

a memory doubleword addressed by DS:SI or ES:DI (used only by string instructions).
m16:16, M16:32:

a memory operand containing a far pointer composed of two numbers. The number to the left
of the colon corresponds to the pointer's segment selector. The number to the right corresponds
to its offset.

m16 & 32, m16 & 16, m32 & 32:
a memory operand consisting of data item pairs whose sizes are indicated on the left and the
right side of the ampersand. All memory addressing modes are allowed. m16 & 16 and m32 &
32 operands are used by the BOUND instruction to provide an operand containing an upper
and lower bounds for array indices. m16 & 32 is used by LIDT and LGDT to provide a word
with which to load the limit field, and a doubleword with which to load the base field of the
corresponding Global and Interrupt Descriptor Table Registers.

moffs8, moffs16, moffs32:
(memory offset) a simple memory variable of type BYTE, WORD, or DWORD used by some
variants of the MOV instruction. The actual address is given by a simple offset relative to the
segment base. No ModR/M byte is used in the instruction. The number shown with moffs
indicates its size, which is determined by the address-size attribute of the instruction.

Sreg:
a segment register. The segment register bit assignments are ES=0, CS=1, SS=2, DS=3, FS=4,
and GS=5.

17.2.2.3 Clocks

The "Clocks" column gives the number of clock cycles the instruction takes to execute. The clock
count calculations makes the following assumptions:

l The instruction has been prefetched and decoded and is ready for execution.
l Bus cycles do not require wait states.
l There are no local bus HOLD requests delaying processor access to the bus.
l No exceptions are detected during instruction execution.
l Memory operands are aligned.

Clock counts for instructions that have an r/m (register or memory) operand are separated by a slash.
The count to the left is used for a register operand; the count to the right is used for a memory
operand.

The following symbols are used in the clock count specifications:

l n, which represents a number of repetitions.
l m, which represents the number of components in the next instruction executed, where the

entire displacement (if any) counts as one component, the entire immediate data (if any)
counts as one component, and every other byte of the instruction and prefix(es) each counts as
one component.

l pm=, a clock count that applies when the instruction executes in Protected Mode. pm= is not
given when the clock counts are the same for Protected and Real Address Modes.

When an exception occurs during the execution of an instruction and the exception handler is in
another task, the instruction execution time is increased by the number of clocks to effect a task
switch. This parameter depends on several factors:

l The type of TSS used to represent the current task (386 TSS or 286 TSS).
l The type of TSS used to represent the new task.

Page 5 of 980386 Programmer's Reference Manual -- Section 17.2

2005-12-10http://i386.cybersabotage.com/s17_02.html

http://i386.cybersabotage.com/s17_02.html

l Whether the current task is in V86 mode.
l Whether the new task is in V86 mode.

Table 17-5 summarizes the task switch times for exceptions.

 Table 17-5. Task Switch Times for Exceptions New TaskOld 386 TSS 286 TSSTask VM = 0386 VM = 0 309 282TSS386 VM = 1 314 231TSS286 307 282TSS

17.2.2.4 Description

The "Description" column following the "Clocks" column briefly explains the various forms of the
instruction. The "Operation" and "Description" sections contain more details of the instruction's
operation.

17.2.2.5 Operation

The "Operation" section contains an algorithmic description of the instruction which uses a notation
similar to the Algol or Pascal language. The algorithms are composed of the following elements:

l Comments are enclosed within the symbol pairs "(*" and "*)".
l Compound statements are enclosed between the keywords of the "if" statement (IF, THEN,

ELSE, FI) or of the "do" statement (DO, OD), or of the "case" statement (CASE ... OF,
ESAC).

l A register name implies the contents of the register. A register name enclosed in brackets
implies the contents of the location whose address is contained in that register. For example,
ES:[DI] indicates the contents of the location whose ES segment relative address is in register
DI. [SI] indicates the contents of the address contained in register SI relative to SI's default
segment (DS) or overridden segment.

l Brackets also used for memory operands, where they mean that the contents of the memory
location is a segment-relative offset. For example, [SRC] indicates that the contents of the
source operand is a segment-relative offset.

l A := B; indicates that the value of B is assigned to A.
l The symbols =, <>, >=, and <= are relational operators used to compare two values, meaning

equal, not equal, greater or equal, less or equal, respectively. A relational expression such as A
= B is TRUE if the value of A is equal to B; otherwise it is FALSE.

The following identifiers are used in the algorithmic descriptions:

l OperandSize represents the operand-size attribute of the instruction, which is either 16 or 32
bits. AddressSize represents the address-size attribute, which is either 16 or 32 bits. For
example,

 IF instruction = CMPSW THEN OperandSize ? 16; ELSE IF instruction = CMPSD THEN OperandSize ? 32; FI; FI;

indicates that the operand-size attribute depends on the form of the CMPS instruction used.
Refer to the explanation of address-size and operand-size attributes at the beginning of this
chapter for general guidelines on how these attributes are determined.

l StackAddrSize represents the stack address-size attribute associated with the instruction,
which has a value of 16 or 32 bits, as explained earlier in the chapter.

l SRC represents the source operand. When there are two operands, SRC is the one on the right.
l DEST represents the destination operand. When there are two operands, DEST is the one on

the left.
l LeftSRC, RightSRC distinguishes between two operands when both are source operands.
l eSP represents either the SP register or the ESP register depending on the setting of the B-bit

for the current stack segment.

Page 6 of 980386 Programmer's Reference Manual -- Section 17.2

2005-12-10http://i386.cybersabotage.com/s17_02.html

http://i386.cybersabotage.com/s17_02.html

The following functions are used in the algorithmic descriptions:

l Truncate to 16 bits(value) reduces the size of the value to fit in 16 bits by discarding the
uppermost bits as needed.

l Addr(operand) returns the effective address of the operand (the result of the effective address
calculation prior to adding the segment base).

l ZeroExtend(value) returns a value zero-extended to the operand-size attribute of the
instruction. For example, if OperandSize = 32, ZeroExtend of a byte value of -10 converts the
byte from F6H to doubleword with hexadecimal value 000000F6H. If the value passed to
ZeroExtend and the operand-size attribute are the same size, ZeroExtend returns the value
unaltered.

l SignExtend(value) returns a value sign-extended to the operand-size attribute of the
instruction. For example, if OperandSize = 32, SignExtend of a byte containing the value -10
converts the byte from F6H to a doubleword with hexadecimal value FFFFFFF6H. If the value
passed to SignExtend and the operand-size attribute are the same size, SignExtend returns the
value unaltered.

l Push(value) pushes a value onto the stack. The number of bytes pushed is determined by the
operand-size attribute of the instruction. The action of Push is as follows:

 IF StackAddrSize = 16 THEN IF OperandSize = 16 THEN SP ? SP

l Pop(value) removes the value from the top of the stack and returns it. The statement EAX ?
Pop(); assigns to EAX the 32-bit value that Pop took from the top of the stack. Pop will return
either a word or a doubleword depending on the operand-size attribute. The action of Pop is as
follows:

 IF StackAddrSize = 16 THEN IF OperandSize = 16 THEN ret val ? SS:[SP]; (* 2

l Bit[BitBase, BitOffset] returns the address of a bit within a bit string, which is a sequence of
bits in memory or a register. Bits are numbered from low-order to high-order within registers
and within memory bytes. In memory, the two bytes of a word are stored with the low-order
byte at the lower address.

If the base operand is a register, the offset can be in the range 0..31. This offset addresses a bit
within the indicated register. An example, "BIT[EAX, 21]," is illustrated in Figure 17-3 .

If BitBase is a memory address, BitOffset can range from -2 gigabits to 2 gigabits. The
addressed bit is numbered (Offset MOD 8) within the byte at address (BitBase + (BitOffset
DIV 8)), where DIV is signed division with rounding towards negative infinity, and MOD
returns a positive number. This is illustrated in Figure 17-4 .

l I-O-Permission(I-O-Address, width) returns TRUE or FALSE depending on the I/O
permission bitmap and other factors. This function is defined as follows:

 IF TSS type is 286 THEN RETURN FALSE; FI; Ptr ? [TSS + 66]; (* fetch bitmap pointer *) BitStringAddr ? SHR (I

l Switch-Tasks is the task switching function described in Chapter 7 .

17.2.2.6 Description

The "Description" section contains further explanation of the instruction's operation.

Page 7 of 980386 Programmer's Reference Manual -- Section 17.2

2005-12-10http://i386.cybersabotage.com/s17_02.html

http://i386.cybersabotage.com/s17_02.html

17.2.2.7 Flags Affected

The "Flags Affected" section lists the flags that are affected by the instruction, as follows:
¡ If a flag is always cleared or always set by the instruction, the value is given (0 or 1)

after the flag name. Arithmetic and logical instructions usually assign values to the
status flags in the uniform manner described in Appendix C . Nonconventional
assignments are described in the "Operation" section.

¡ The values of flags listed as "undefined" may be changed by the instruction in an
indeterminate manner.

All flags not listed are unchanged by the instruction.

17.2.2.8 Protected Mode Exceptions

This section lists the exceptions that can occur when the instruction is executed in 80386
Protected Mode. The exception names are a pound sign (#) followed by two letters and an
optional error code in parentheses. For example, #GP(0) denotes a general protection
exception with an error code of 0. Table 17-6 associates each two-letter name with the
corresponding interrupt number.

Chapter 9 describes the exceptions and the 80386 state upon entry to the exception.

Application programmers should consult the documentation provided with their operating
systems to determine the actions taken when exceptions occur.

 Table 17-6. 80386 ExceptionsMnemonic Interrupt Description#UD 6 Invalid opcode#NM 7 Coprocessor not available#DF 8 Double fault#TS 10 Invalid TSS#NP 11 Segment

17.2.2.9 Real Address Mode Exceptions

Because less error checking is performed by the 80386 in Real Address Mode, this mode has

Page 8 of 980386 Programmer's Reference Manual -- Section 17.2

2005-12-10http://i386.cybersabotage.com/s17_02.html

http://i386.cybersabotage.com/s17_02.html

fewer exception conditions . Refer to Chapter 14 for further information on these exceptions.

17.2.2.10 Virtual-8086 Mode Exceptions

Virtual 8086 tasks provide the ability to simulate Virtual 8086 machines. Virtual 8086 Mode
exceptions are similar to those for the 8086 processor, but there are some differences . Refer to
Chapter 15 for details .

up: Chapter 17 -- 80386 Instruction Set
prev: 17.1 Operand Size and Address-Size Attributes
next: AAA ASCII Adjust after Addition

Page 9 of 980386 Programmer's Reference Manual -- Section 17.2

2005-12-10http://i386.cybersabotage.com/s17_02.html

http://i386.cybersabotage.com/s17_02.html

