
The Portable Executable File
Format from Top to Bottom
Randy Kath
Microsoft Developer Network Technology Group

Download the EXEVIEW sample. (Afterwards, use PKUNZIP.EXE -d to recreate directory
structure.)

Download the PEFILE sample. (Afterwards, use PKUNZIP.EXE -d to recreate directory structure.)

Abstract

�The Windows NT version 3.1 operating system introduces a new executable file format called
the Portable Executable (PE) file format. The Portable Executable File Format specification,
though rather vague, has been made available to the public and is included on the Microsoft
Developer Network CD (Specs and Strategy, Specifications, Windows NT File Format
Specifications).

Yet this specification alone does not provide enough information to make it easy, or even
reasonable, for developers to understand the PE file format. This article is meant to address
that problem. In it you'll find a thorough explanation of the entire PE file format, along with
descriptions of all the necessary structures and source code examples that demonstrate how to
use this information.

All of the source code examples that appear in this article are taken from a dynamic-link library
(DLL) called PEFILE.DLL. I wrote this DLL simply for the purpose of getting at the important
information contained within a PE file. The DLL and its source code are also included on this CD
as part of the PEFile sample application; feel free to use the DLL in your own applications. Also,
feel free to take the source code and build on it for any specific purpose you may have. At the
end of this article, you'll find a brief list of the functions exported from the PEFILE.DLL and an
explanation of how to use them. I think you'll find these functions make understanding the PE
file format easier to cope with.

Introduction

The recent addition of the Microsoft® �Windows NT operating system to the family of
�Windows operating systems brought many changes to the development environment and

more than a few changes to applications themselves. One of the more significant changes is the
introduction of the Portable Executable (PE) file format. The new PE file format draws primarily
from the COFF (Common Object File Format) specification that is common to UNIX® operating
systems. Yet, to remain compatible with previous versions of the MS-DOS® and Windows
operating systems, the PE file format also retains the old familiar MZ header from MS-DOS.

In this article, the PE file format is explained using a top-down approach. This article discusses
each of the components of the file as they occur when you traverse the file's contents, starting
at the top and working your way down through the file.

Much of the definition of individual file components comes from the file WINNT.H, a file included
 in the Microsoft Win32 Software Development Kit (SDK) for Windows NT. In it you will find

structure type definitions for each of the file headers and data directories used to represent
various components in the file. In other places in the file, WINNT.H lacks sufficient definition of
the file structure. In these places, I chose to define my own structures that can be used to
access the data from the file. You will find these structures defined in PEFILE.H, a file used to

Page 1 of 29The Portable Executable File Format from Top to Bottom

2005-11-22http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

create the PEFILE.DLL. The entire suite of PEFILE.H development files is included in the PEFile
sample application.

In addition to the PEFILE.DLL sample code, a separate Win32-based sample application called
EXEVIEW.EXE accompanies this article. This sample was created for two purposes: First, I
needed a way to be able to test the PEFILE.DLL functions, which in some cases required
multiple file views simultaneously--hence the multiple view support. Second, much of the work
of figuring out PE file format involved being able to see the data interactively. For example, to
understand how the import address name table is structured, I had to view the .idata section
header, the import image data directory, the optional header, and the actual .idata section
body, all simultaneously. EXEVIEW.EXE is the perfect sample for viewing that information.

Without further ado, let's begin.

Structure of PE Files

The PE file format is organized as a linear stream of data. It begins with an MS-DOS header, a
real-mode program stub, and a PE file signature. Immediately following is a PE file header and
optional header. Beyond that, all the section headers appear, followed by all of the section
bodies. Closing out the file are a few other regions of miscellaneous information, including
relocation information, symbol table information, line number information, and string table
data. All of this is more easily absorbed by looking at it graphically, as shown in Figure 1.

Page 2 of 29The Portable Executable File Format from Top to Bottom

2005-11-22http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

Figure 1. Structure of a Portable Executable file image

Starting with the MS-DOS file header structure, each of the components in the PE file format is
discussed below in the order in which it occurs in the file. Much of this discussion is based on
sample code that demonstrates how to get to the information in the file. All of the sample code
is taken from the file PEFILE.C, the source module for PEFILE.DLL. Each of these examples
takes advantage of one of the coolest features of Windows NT, memory-mapped files. Memory-
mapped files permit the use of simple pointer dereferencing to access the data contained within

Page 3 of 29The Portable Executable File Format from Top to Bottom

2005-11-22http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

the file. Each of the examples uses memory-mapped files for accessing data in PE files.

Note Refer to the section at the end of this article for a discussion on how to use PEFILE.DLL.

MS-DOS/Real-Mode Header

As mentioned above, the first component in the PE file format is the MS-DOS header. The MS-
DOS header is not new for the PE file format. It is the same MS-DOS header that has been
around since version 2 of the MS-DOS operating system. The main reason for keeping the same
structure intact at the beginning of the PE file format is so that, when you attempt to load a file
created under Windows version 3.1 or earlier, or MS DOS version 2.0 or later, the operating
system can read the file and understand that it is not compatible. In other words, when you
attempt to run a Windows NT executable on MS-DOS version 6.0, you get this message: "This
program cannot be run in DOS mode." If the MS-DOS header was not included as the first part
of the PE file format, the operating system would simply fail the attempt to load the file and
offer something completely useless, such as: "The name specified is not recognized as an
internal or external command, operable program or batch file."

The MS-DOS header occupies the first 64 bytes of the PE file. A structure representing its
content is described below:

WINNT.H

typedef struct _IMAGE_DOS_HEADER { // DOS .EXE header
 USHORT e_magic; // Magic number
 USHORT e_cblp; // Bytes on last page of file
 USHORT e_cp; // Pages in file
 USHORT e_crlc; // Relocations
 USHORT e_cparhdr; // Size of header in paragraphs
 USHORT e_minalloc; // Minimum extra paragraphs needed
 USHORT e_maxalloc; // Maximum extra paragraphs needed
 USHORT e_ss; // Initial (relative) SS value
 USHORT e_sp; // Initial SP value
 USHORT e_csum; // Checksum
 USHORT e_ip; // Initial IP value
 USHORT e_cs; // Initial (relative) CS value
 USHORT e_lfarlc; // File address of relocation table
 USHORT e_ovno; // Overlay number
 USHORT e_res[4]; // Reserved words
 USHORT e_oemid; // OEM identifier (for e_oeminfo)
 USHORT e_oeminfo; // OEM information; e_oemid specific
 USHORT e_res2[10]; // Reserved words
 LONG e_lfanew; // File address of new exe header
 } IMAGE_DOS_HEADER, *PIMAGE_DOS_HEADER;

The first field, e_magic, is the so-called magic number. This field is used to identify an MS-
DOS-compatible file type. All MS-DOS-compatible executable files set this value to 0x54AD,
which represents the ASCII characters MZ. MS-DOS headers are sometimes referred to as MZ
headers for this reason. Many other fields are important to MS-DOS operating systems, but for
Windows NT, there is really one more important field in this structure. The final field,
e_lfanew, is a 4-byte offset into the file where the PE file header is located. It is necessary to
use this offset to locate the PE header in the file. For PE files in Windows NT, the PE file header
occurs soon after the MS-DOS header with only the real-mode stub program between them.

Real-Mode Stub Program

The real-mode stub program is an actual program run by MS-DOS when the executable is
loaded. For an actual MS-DOS executable image file, the application begins executing here. For
successive operating systems, including Windows, OS/2®, and Windows NT, an MS-DOS stub

Page 4 of 29The Portable Executable File Format from Top to Bottom

2005-11-22http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

program is placed here that runs instead of the actual application. The programs typically do no
more than output a line of text, such as: "This program requires Microsoft Windows v3.1 or
greater." Of course, whoever creates the application is able to place any stub they like here,
meaning you may often see such things as: "You can't run a Windows NT application on OS/2,
it's simply not possible."

When building an application for Windows version 3.1, the linker links a default stub program
called WINSTUB.EXE into your executable. You can override the default linker behavior by
substituting your own valid MS-DOS-based program in place of WINSTUB and indicating this to
the linker with the STUB module definition statement. Applications developed for Windows NT
can do the same thing by using the -STUB: linker option when linking the executable file.

PE File Header and Signature

The PE file header is located by indexing the e_lfanew field of the MS-DOS header. The
e_lfanew field simply gives the offset in the file, so add the file's memory-mapped base
address to determine the actual memory-mapped address. For example, the following macro is
included in the PEFILE.H source file:

PEFILE.H

#define NTSIGNATURE(a) ((LPVOID)((BYTE *)a + \
 ((PIMAGE_DOS_HEADER)a)->e_lfanew))

When manipulating PE file information, I found that there were several locations in the file that
I needed to refer to often. Since these locations are merely offsets into the file, it is easier to
implement these locations as macros because they provide much better performance than
functions do.

Notice that instead of retrieving the offset of the PE file header, this macro retrieves the
location of the PE file signature. Starting with Windows and OS/2 executables, .EXE files were
given file signatures to specify the intended target operating system. For the PE file format in
Windows NT, this signature occurs immediately before the PE file header structure. In versions
of Windows and OS/2, the signature is the first word of the file header. Also, for the PE file
format, Windows NT uses a DWORD for the signature.

The macro presented above returns the offset of where the file signature appears, regardless of
which type of executable file it is. So depending on whether it's a Windows NT file signature or
not, the file header exists either after the signature DWORD or at the signature WORD. To
resolve this confusion, I wrote the ImageFileType function (following), which returns the type
of image file:

PEFILE.C

DWORD WINAPI ImageFileType (
 LPVOID lpFile)
{
 /* DOS file signature comes first. */
 if (*(USHORT *)lpFile == IMAGE_DOS_SIGNATURE)
 {
 /* Determine location of PE File header from
 DOS header. */
 if (LOWORD (*(DWORD *)NTSIGNATURE (lpFile)) ==
 IMAGE_OS2_SIGNATURE ||
 LOWORD (*(DWORD *)NTSIGNATURE (lpFile)) ==
 IMAGE_OS2_SIGNATURE_LE)
 return (DWORD)LOWORD(*(DWORD *)NTSIGNATURE (lpFile));

Page 5 of 29The Portable Executable File Format from Top to Bottom

2005-11-22http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

 else if (*(DWORD *)NTSIGNATURE (lpFile) ==
 IMAGE_NT_SIGNATURE)
 return IMAGE_NT_SIGNATURE;

 else
 return IMAGE_DOS_SIGNATURE;
 }

 else
 /* unknown file type */
 return 0;
}

The code listed above quickly shows how useful the NTSIGNATURE macro becomes. The
macro makes it easy to compare the different file types and return the appropriate one for a
given type of file. The four different file types defined in WINNT.H are:

WINNT.H

#define IMAGE_DOS_SIGNATURE 0x5A4D // MZ
#define IMAGE_OS2_SIGNATURE 0x454E // NE
#define IMAGE_OS2_SIGNATURE_LE 0x454C // LE
#define IMAGE_NT_SIGNATURE 0x00004550 // PE00

At first it seems curious that Windows executable file types do not appear on this list. But then,
after a little investigation, the reason becomes clear: There really is no difference between
Windows executables and OS/2 executables other than the operating system version
specification. Both operating systems share the same executable file structure.

Turning our attention back to the Windows NT PE file format, we find that once we have the
location of the file signature, the PE file follows four bytes later. The next macro identifies the
PE file header:

PEFILE.C

#define PEFHDROFFSET(a) ((LPVOID)((BYTE *)a + \
 ((PIMAGE_DOS_HEADER)a)->e_lfanew + SIZE_OF_NT_SIGNATURE))

The only difference between this and the previous macro is that this one adds in the constant
SIZE_OF_NT_SIGNATURE. Sad to say, this constant is not defined in WINNT.H, but is instead
one I defined in PEFILE.H as the size of a DWORD.

Now that we know the location of the PE file header, we can examine the data in the header
simply by assigning this location to a structure, as in the following example:

PIMAGE_FILE_HEADER pfh;

pfh = (PIMAGE_FILE_HEADER)PEFHDROFFSET (lpFile);

In this example, lpFile represents a pointer to the base of the memory-mapped executable file,
and therein lies the convenience of memory-mapped files. No file I/O needs to be performed;
simply dereference the pointer pfh to access information in the file. The PE file header structure
is defined as:

WINNT.H

typedef struct _IMAGE_FILE_HEADER {
 USHORT Machine;
 USHORT NumberOfSections;

Page 6 of 29The Portable Executable File Format from Top to Bottom

2005-11-22http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

 ULONG TimeDateStamp;
 ULONG PointerToSymbolTable;
 ULONG NumberOfSymbols;
 USHORT SizeOfOptionalHeader;
 USHORT Characteristics;
} IMAGE_FILE_HEADER, *PIMAGE_FILE_HEADER;

#define IMAGE_SIZEOF_FILE_HEADER 20

Notice that the size of the file header structure is conveniently defined in the include file. This
makes it easy to get the size of the structure, but I found it easier to use the sizeof function on
the structure itself because it does not require me to remember the name of the constant
IMAGE_SIZEOF_FILE_HEADER in addition to the IMAGE_FILE_HEADER structure name itself.
On the other hand, remembering the name of all the structures proved challenging enough,
especially since none of these structures is documented anywhere except in the WINNT.H
include file.

The information in the PE file is basically high-level information that is used by the system or
applications to determine how to treat the file. The first field is used to indicate what type of
machine the executable was built for, such as the DEC® Alpha, MIPS R4000, Intel® x86, or
some other processor. The system uses this information to quickly determine how to treat the
file before going any further into the rest of the file data.

The Characteristics field identifies specific characteristics about the file. For example, consider
how separate debug files are managed for an executable. It is possible to strip debug
information from a PE file and store it in a debug file (.DBG) for use by debuggers. To do this, a
debugger needs to know whether to find the debug information in a separate file or not and
whether the information has been stripped from the file or not. A debugger could find out by
drilling down into the executable file looking for debug information. To save the debugger from
having to search the file, a file characteristic that indicates that the file has been stripped
(IMAGE_FILE_DEBUG_STRIPPED) was invented. Debuggers can look in the PE file header to
quickly determine whether the debug information is present in the file or not.

WINNT.H defines several other flags that indicate file header information much the way the
example described above does. I'll leave it as an exercise for the reader to look up the flags to
see if any of them are interesting or not. They are located in WINNT.H immediately after the
IMAGE_FILE_HEADER structure described above.

One other useful entry in the PE file header structure is the NumberOfSections field. It turns out
that you need to know how many sections--more specifically, how many section headers and
section bodies--are in the file in order to extract the information easily. Each section header and
section body is laid out sequentially in the file, so the number of sections is necessary to
determine where the section headers and bodies end. The following function extracts the
number of sections from the PE file header:

PEFILE.C

int WINAPI NumOfSections (
 LPVOID lpFile)
{
 /* Number of sections is indicated in file header. */
 return (int)((PIMAGE_FILE_HEADER)
 PEFHDROFFSET (lpFile))->NumberOfSections);
}

As you can see, the PEFHDROFFSET and the other macros are pretty handy to have around.

PE Optional Header

Page 7 of 29The Portable Executable File Format from Top to Bottom

2005-11-22http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

The next 224 bytes in the executable file make up the PE optional header. Though its name is
"optional header," rest assured that this is not an optional entry in PE executable files. A pointer
to the optional header is obtained with the OPTHDROFFSET macro:

PEFILE.H

#define OPTHDROFFSET(a) ((LPVOID)((BYTE *)a + \
 ((PIMAGE_DOS_HEADER)a)->e_lfanew + SIZE_OF_NT_SIGNATURE + \
 sizeof (IMAGE_FILE_HEADER)))

The optional header contains most of the meaningful information about the executable image,
such as initial stack size, program entry point location, preferred base address, operating
system version, section alignment information, and so forth. The
IMAGE_OPTIONAL_HEADER structure represents the optional header as follows:

WINNT.H

typedef struct _IMAGE_OPTIONAL_HEADER {
 //
 // Standard fields.
 //
 USHORT Magic;
 UCHAR MajorLinkerVersion;
 UCHAR MinorLinkerVersion;
 ULONG SizeOfCode;
 ULONG SizeOfInitializedData;
 ULONG SizeOfUninitializedData;
 ULONG AddressOfEntryPoint;
 ULONG BaseOfCode;
 ULONG BaseOfData;
 //
 // NT additional fields.
 //
 ULONG ImageBase;
 ULONG SectionAlignment;
 ULONG FileAlignment;
 USHORT MajorOperatingSystemVersion;
 USHORT MinorOperatingSystemVersion;
 USHORT MajorImageVersion;
 USHORT MinorImageVersion;
 USHORT MajorSubsystemVersion;
 USHORT MinorSubsystemVersion;
 ULONG Reserved1;
 ULONG SizeOfImage;
 ULONG SizeOfHeaders;
 ULONG CheckSum;
 USHORT Subsystem;
 USHORT DllCharacteristics;
 ULONG SizeOfStackReserve;
 ULONG SizeOfStackCommit;
 ULONG SizeOfHeapReserve;
 ULONG SizeOfHeapCommit;
 ULONG LoaderFlags;
 ULONG NumberOfRvaAndSizes;
 IMAGE_DATA_DIRECTORY DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES];
} IMAGE_OPTIONAL_HEADER, *PIMAGE_OPTIONAL_HEADER;

As you can see, the list of fields in this structure is rather lengthy. Rather than bore you with
descriptions of all of these fields, I'll simply discuss the useful ones--that is, useful in the
context of exploring the PE file format.

Page 8 of 29The Portable Executable File Format from Top to Bottom

2005-11-22http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

Standard Fields

First, note that the structure is divided into "Standard fields" and "NT additional fields." The
standard fields are those common to the Common Object File Format (COFF), which most UNIX
executable files use. Though the standard fields retain the names defined in COFF, Windows NT
actually uses some of them for different purposes that would be better described with other
names.

l Magic. I was unable to track down what this field is used for. For the EXEVIEW.EXE
sample application, the value is 0x010B or 267.

l MajorLinkerVersion, MinorLinkerVersion. Indicates version of the linker that linked this
image. The preliminary Windows NT Software Development Kit (SDK), which shipped with
build 438 of Windows NT, includes linker version 2.39 (2.27 hex).

l SizeOfCode. Size of executable code.
l SizeOfInitializedData. Size of initialized data.
l SizeOfUninitializedData. Size of uninitialized data.
l AddressOfEntryPoint. Of the standard fields, the AddressOfEntryPoint field is the most

interesting for the PE file format. This field indicates the location of the entry point for the
application and, perhaps more importantly to system hackers, the location of the end of
the Import Address Table (IAT). The following function demonstrates how to retrieve the
entry point of a Windows NT executable image from the optional header.

PEFILE.C

LPVOID WINAPI GetModuleEntryPoint (
 LPVOID lpFile)
{
 PIMAGE_OPTIONAL_HEADER poh;

 poh = (PIMAGE_OPTIONAL_HEADER)OPTHDROFFSET (lpFile);

 if (poh != NULL)
 return (LPVOID)poh->AddressOfEntryPoint;
 else
 return NULL;
}

l BaseOfCode. Relative offset of code (".text" section) in loaded image.
l BaseOfData. Relative offset of uninitialized data (".bss" section) in loaded image.

Windows NT Additional Fields

The additional fields added to the Windows NT PE file format provide loader support for much of
the Windows NT-specific process behavior. Following is a summary of these fields.

l ImageBase. Preferred base address in the address space of a process to map the
executable image to. The linker that comes with the Microsoft Win32 SDK for Windows NT
defaults to 0x00400000, but you can override the default with the -BASE: linker switch.

l SectionAlignment. Each section is loaded into the address space of a process sequentially,
beginning at ImageBase. SectionAlignment dictates the minimum amount of space a
section can occupy when loaded--that is, sections are aligned on SectionAlignment
boundaries.

Section alignment can be no less than the page size (currently 4096 bytes on the x86
platform) and must be a multiple of the page size as dictated by the behavior of Windows
NT's virtual memory manager. 4096 bytes is the x86 linker default, but this can be set
using the -ALIGN: linker switch.

Page 9 of 29The Portable Executable File Format from Top to Bottom

2005-11-22http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

l FileAlignment. Minimum granularity of chunks of information within the image file prior to
loading. For example, the linker zero-pads a section body (raw data for a section) up to
the nearest FileAlignment boundary in the file. Version 2.39 of the linker mentioned
earlier aligns image files on a 0x200-byte granularity. This value is constrained to be a
power of 2 between 512 and 65,535.

l * MajorOperatingSystemVersion. Indicates the major version of the Windows NT
operating system, currently set to 1 for Windows NT version 1.0.

l MinorOperatingSystemVersion. Indicates the minor version of the Windows NT operating
system, currently set to 0 for Windows NT version 1.0

l MajorImageVersion. Used to indicate the major version number of the application; in
Microsoft Excel version 4.0, it would be 4.

l MinorImageVersion. Used to indicate the minor version number of the application; in
Microsoft Excel version 4.0, it would be 0.

l MajorSubsystemVersion. Indicates the Windows NT Win32 subsystem major version
number, currently set to 3 for Windows NT version 3.10.

l MinorSubsystemVersion. Indicates the Windows NT Win32 subsystem minor version
number, currently set to 10 for Windows NT version 3.10.

l Reserved1. Unknown purpose, currently not used by the system and set to zero by the
linker.

l * SizeOfImage. Indicates the amount of address space to reserve in the address space for
the loaded executable image. This number is influenced greatly by SectionAlignment. For
example, consider a system having a fixed page size of 4096 bytes. If you have an
executable with 11 sections, each less than 4096 bytes, aligned on a 65,536-byte
boundary, the SizeOfImage field would be set to 11 * 65,536 = 720,896 (176 pages).
The same file linked with 4096-byte alignment would result in 11 * 4096 = 45,056 (11
pages) for the SizeOfImage field. This is a simple example in which each section requires
less than a page of memory. In reality, the linker determines the exact SizeOfImage by
figuring each section individually. It first determines how many bytes the section requires,
then it rounds up to the nearest page boundary, and finally it rounds page count to the
nearest SectionAlignment boundary. The total is then the sum of each section's individual
requirement.

l SizeOfHeaders. This field indicates how much space in the file is used for representing all
the file headers, including the MS-DOS header, PE file header, PE optional header, and PE
section headers. The section bodies begin at this location in the file.

l CheckSum. A checksum value is used to validate the executable file at load time. The
value is set and verified by the linker. The algorithm used for creating these checksum
values is proprietary information and will not be published.

l Subsystem. Field used to identify the target subsystem for this executable. Each of the
possible subsystem values are listed in the WINNT.H file immediately after the
IMAGE_OPTIONAL_HEADER structure.

l DllCharacteristics. Flags used to indicate if a DLL image includes entry points for process
and thread initialization and termination.

l SizeOfStackReserve, SizeOfStackCommit, SizeOfHeapReserve, SizeOfHeapCommit. These
fields control the amount of address space to reserve and commit for the stack and
default heap. Both the stack and heap have default values of 1 page committed and 16
pages reserved. These values are set with the linker switches -STACKSIZE: and -
HEAPSIZE:.

l LoaderFlags. Tells the loader whether to break on load, debug on load, or the default,
which is to let things run normally.

l NumberOfRvaAndSizes. This field identifies the length of the DataDirectory array that
follows. It is important to note that this field is used to identify the size of the array, not
the number of valid entries in the array.

l DataDirectory. The data directory indicates where to find other important components of
executable information in the file. It is really nothing more than an array of
IMAGE_DATA_DIRECTORY structures that are located at the end of the optional header
structure. The current PE file format defines 16 possible data directories, 11 of which are
now being used.

Page 10 of 29The Portable Executable File Format from Top to Bottom

2005-11-22http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

Data Directories

As defined in WINNT.H, the data directories are:

WINNT.H

// Directory Entries

// Export Directory
#define IMAGE_DIRECTORY_ENTRY_EXPORT 0
// Import Directory
#define IMAGE_DIRECTORY_ENTRY_IMPORT 1
// Resource Directory
#define IMAGE_DIRECTORY_ENTRY_RESOURCE 2
// Exception Directory
#define IMAGE_DIRECTORY_ENTRY_EXCEPTION 3
// Security Directory
#define IMAGE_DIRECTORY_ENTRY_SECURITY 4
// Base Relocation Table
#define IMAGE_DIRECTORY_ENTRY_BASERELOC 5
// Debug Directory
#define IMAGE_DIRECTORY_ENTRY_DEBUG 6
// Description String
#define IMAGE_DIRECTORY_ENTRY_COPYRIGHT 7
// Machine Value (MIPS GP)
#define IMAGE_DIRECTORY_ENTRY_GLOBALPTR 8
// TLS Directory
#define IMAGE_DIRECTORY_ENTRY_TLS 9
// Load Configuration Directory
#define IMAGE_DIRECTORY_ENTRY_LOAD_CONFIG 10

Each data directory is basically a structure defined as an IMAGE_DATA_DIRECTORY. And
although data directory entries themselves are the same, each specific directory type is entirely
unique. The definition of each defined data directory is described in "Predefined Sections" later
in this article.

WINNT.H

typedef struct _IMAGE_DATA_DIRECTORY {
 ULONG VirtualAddress;
 ULONG Size;
} IMAGE_DATA_DIRECTORY, *PIMAGE_DATA_DIRECTORY;

Each data directory entry specifies the size and relative virtual address of the directory. To
locate a particular directory, you determine the relative address from the data directory array in
the optional header. Then use the virtual address to determine which section the directory is in.
Once you determine which section contains the directory, the section header for that section is
then used to find the exact file offset location of the data directory.

So to get a data directory, you first need to know about sections, which are described next. An
example of how to locate data directories immediately follows this discussion.

PE File Sections

The PE file specification consists of the headers defined so far and a generic object called a
section. Sections contain the content of the file, including code, data, resources, and other
executable information. Each section has a header and a body (the raw data). Section headers
are described below, but section bodies lack a rigid file structure. They can be organized in
almost any way a linker wishes to organize them, as long as the header is filled with enough

Page 11 of 29The Portable Executable File Format from Top to Bottom

2005-11-22http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

information to be able to decipher the data.

Section Headers

Section headers are located sequentially right after the optional header in the PE file format.
Each section header is 40 bytes with no padding between them. Section headers are defined as
in the following structure:

WINNT.H

#define IMAGE_SIZEOF_SHORT_NAME 8

typedef struct _IMAGE_SECTION_HEADER {
 UCHAR Name[IMAGE_SIZEOF_SHORT_NAME];
 union {
 ULONG PhysicalAddress;
 ULONG VirtualSize;
 } Misc;
 ULONG VirtualAddress;
 ULONG SizeOfRawData;
 ULONG PointerToRawData;
 ULONG PointerToRelocations;
 ULONG PointerToLinenumbers;
 USHORT NumberOfRelocations;
 USHORT NumberOfLinenumbers;
 ULONG Characteristics;
} IMAGE_SECTION_HEADER, *PIMAGE_SECTION_HEADER;

How do you go about getting section header information for a particular section? Since section
headers are organized sequentially in no specific order, section headers must be located by
name. The following function shows how to retrieve a section header from a PE image file given
the name of the section:

PEFILE.C

BOOL WINAPI GetSectionHdrByName (
 LPVOID lpFile,
 IMAGE_SECTION_HEADER *sh,
 char *szSection)
{
 PIMAGE_SECTION_HEADER psh;
 int nSections = NumOfSections (lpFile);
 int i;

 if ((psh = (PIMAGE_SECTION_HEADER)SECHDROFFSET (lpFile)) !=
 NULL)
 {
 /* find the section by name */
 for (i=0; i<nSections; i++)
 {
 if (!strcmp (psh->Name, szSection))
 {
 /* copy data to header */
 CopyMemory ((LPVOID)sh,
 (LPVOID)psh,
 sizeof (IMAGE_SECTION_HEADER));
 return TRUE;
 }
 else
 psh++;

Page 12 of 29The Portable Executable File Format from Top to Bottom

2005-11-22http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

 }
 }

 return FALSE;
}

The function simply locates the first section header via the SECHDROFFSET macro. Then the
function loops through each section, comparing each section's name with the name of the
section it's looking for, until it finds the right one. When the section is found, the function copies
the data from the memory-mapped file to the structure passed in to the function. The fields of
the IMAGE_SECTION_HEADER structure can then be accessed directly from the structure.

Section Header Fields

l Name. Each section header has a name field up to eight characters long, for which the
first character must be a period.

l PhysicalAddress or VirtualSize. The second field is a union field that is not currently used.
l VirtualAddress. This field identifies the virtual address in the process's address space to

which to load the section. The actual address is created by taking the value of this field
and adding it to the ImageBase virtual address in the optional header structure. Keep in
mind, though, that if this image file represents a DLL, there is no guarantee that the DLL
will be loaded to the ImageBase location requested. So once the file is loaded into a
process, the actual ImageBase value should be verified programmatically using
GetModuleHandle.

l SizeOfRawData. This field indicates the FileAlignment-relative size of the section body.
The actual size of the section body will be less than or equal to a multiple of FileAlignment
in the file. Once the image is loaded into a process's address space, the size of the section
body becomes less than or equal to a multiple of SectionAlignment.

l PointerToRawData. This is an offset to the location of the section body in the file.
l PointerToRelocations, PointerToLinenumbers, NumberOfRelocations,

NumberOfLinenumbers. None of these fields are used in the PE file format.
l Characteristics. Defines the section characteristics. These values are found both in

WINNT.H and in the Portable Executable Format specification located on this CD.

Locating Data Directories

Data directories exist within the body of their corresponding data section. Typically, data
directories are the first structure within the section body, but not out of necessity. For that
reason, you need to retrieve information from both the section header and optional header to

Value Definition

0x00000020 Code section

0x00000040 Initialized data section

0x00000080 Uninitialized data section

0x04000000 Section cannot be cached

0x08000000 Section is not pageable

0x10000000 Section is shared

0x20000000 Executable section

0x40000000 Readable section

0x80000000 Writable section

Page 13 of 29The Portable Executable File Format from Top to Bottom

2005-11-22http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

locate a specific data directory.

To make this process easier, the following function was written to locate the data directory for
any of the directories defined in WINNT.H:

PEFILE.C

LPVOID WINAPI ImageDirectoryOffset (
 LPVOID lpFile,
 DWORD dwIMAGE_DIRECTORY)
{
 PIMAGE_OPTIONAL_HEADER poh;
 PIMAGE_SECTION_HEADER psh;
 int nSections = NumOfSections (lpFile);
 int i = 0;
 LPVOID VAImageDir;

 /* Must be 0 thru (NumberOfRvaAndSizes-1). */
 if (dwIMAGE_DIRECTORY >= poh->NumberOfRvaAndSizes)
 return NULL;

 /* Retrieve offsets to optional and section headers. */
 poh = (PIMAGE_OPTIONAL_HEADER)OPTHDROFFSET (lpFile);
 psh = (PIMAGE_SECTION_HEADER)SECHDROFFSET (lpFile);

 /* Locate image directory's relative virtual address. */
 VAImageDir = (LPVOID)poh->DataDirectory
 [dwIMAGE_DIRECTORY].VirtualAddress;

 /* Locate section containing image directory. */
 while (i++<nSections)
 {
 if (psh->VirtualAddress <= (DWORD)VAImageDir &&
 psh->VirtualAddress +
 psh->SizeOfRawData > (DWORD)VAImageDir)
 break;
 psh++;
 }

 if (i > nSections)
 return NULL;

 /* Return image import directory offset. */
 return (LPVOID)(((int)lpFile +
 (int)VAImageDir. psh->VirtualAddress) +
 (int)psh->PointerToRawData);
}

The function begins by validating the requested data directory entry number. Then it retrieves
pointers to the optional header and first section header. From the optional header, the function
determines the data directory's virtual address, and it uses this value to determine within which
section body the data directory is located. Once the appropriate section body has been
identified, the specific location of the data directory is found by translating the relative virtual
address of the data directory to a specific address into the file.

Predefined Sections

An application for Windows NT typically has the nine predefined sections named .text, .bss,
.rdata, .data, .rsrc, .edata, .idata, .pdata, and .debug. Some applications do not need all of
these sections, while others may define still more sections to suit their specific needs. This
behavior is similar to code and data segments in MS-DOS and Windows version 3.1. In fact, the

Page 14 of 29The Portable Executable File Format from Top to Bottom

2005-11-22http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

way an application defines a unique section is by using the standard compiler directives for
naming code and data segments or by using the name segment compiler option -NT--exactly
the same way in which applications defined unique code and data segments in Windows version
3.1.

The following is a discussion of some of the more interesting sections common to typical
Windows NT PE files.

Executable code section, .text

One difference between Windows version 3.1 and Windows NT is that the default behavior
combines all code segments (as they are referred to in Windows version 3.1) into a single
section called ".text" in Windows NT. Since Windows NT uses a page-based virtual memory
management system, there is no advantage to separating code into distinct code segments.
Consequently, having one large code section is easier to manage for both the operating system
and the application developer.

The .text section also contains the entry point mentioned earlier. The IAT also lives in the .text
section immediately before the module entry point. (The IAT's presence in the .text section
makes sense because the table is really a series of jump instructions, for which the specific
location to jump to is the fixed-up address.) When Windows NT executable images are loaded
into a process's address space, the IAT is fixed up with the location of each imported function's
physical address. In order to find the IAT in the .text section, the loader simply locates the
module entry point and relies on the fact that the IAT occurs immediately before the entry
point. And since each entry is the same size, it is easy to walk backward in the table to find its
beginning.

Data sections, .bss, .rdata, .data

The .bss section represents uninitialized data for the application, including all variables declared
as static within a function or source module.

The .rdata section represents read-only data, such as literal strings, constants, and debug
directory information.

All other variables (except automatic variables, which appear on the stack) are stored in
the .data section. Basically, these are application or module global variables.

Resources section, .rsrc

The .rsrc section contains resource information for a module. It begins with a resource directory
structure like most other sections, but this section's data is further structured into a resource
tree. The IMAGE_RESOURCE_DIRECTORY, shown below, forms the root and nodes of the
tree.

WINNT.H

typedef struct _IMAGE_RESOURCE_DIRECTORY {
 ULONG Characteristics;
 ULONG TimeDateStamp;
 USHORT MajorVersion;
 USHORT MinorVersion;
 USHORT NumberOfNamedEntries;
 USHORT NumberOfIdEntries;
} IMAGE_RESOURCE_DIRECTORY, *PIMAGE_RESOURCE_DIRECTORY;

Looking at the directory structure, you won't find any pointer to the next nodes. Instead, there
are two fields, NumberOfNamedEntries and NumberOfIdEntries, used to indicate how many

Page 15 of 29The Portable Executable File Format from Top to Bottom

2005-11-22http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

entries are attached to the directory. By attached, I mean the directory entries follow
immediately after the directory in the section data. The named entries appear first in ascending
alphabetical order, followed by the ID entries in ascending numerical order.

A directory entry consists of two fields, as described in the following
IMAGE_RESOURCE_DIRECTORY_ENTRY structure:

WINNT.H

typedef struct _IMAGE_RESOURCE_DIRECTORY_ENTRY {
 ULONG Name;
 ULONG OffsetToData;
} IMAGE_RESOURCE_DIRECTORY_ENTRY, *PIMAGE_RESOURCE_DIRECTORY_ENTRY;

The two fields are used for different things depending on the level of the tree. The Name field is
used to identify either a type of resource, a resource name, or a resource's language ID. The
OffsetToData field is always used to point to a sibling in the tree, either a directory node or a
leaf node.

Leaf nodes are the lowest node in the resource tree. They define the size and location of the
actual resource data. Each leaf node is represented using the following
IMAGE_RESOURCE_DATA_ENTRY structure:

WINNT.H

typedef struct _IMAGE_RESOURCE_DATA_ENTRY {
 ULONG OffsetToData;
 ULONG Size;
 ULONG CodePage;
 ULONG Reserved;
} IMAGE_RESOURCE_DATA_ENTRY, *PIMAGE_RESOURCE_DATA_ENTRY;

The two fields OffsetToData and Size indicate the location and size of the actual resource data.
Since this information is used primarily by functions once the application has been loaded, it
makes more sense to make the OffsetToData field a relative virtual address. This is precisely
the case. Interestingly enough, all other offsets, such as pointers from directory entries to other
directories, are offsets relative to the location of the root node.

To make all of this a little clearer, consider Figure 2.

Page 16 of 29The Portable Executable File Format from Top to Bottom

2005-11-22http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

Figure 2. A simple resource tree structure

Figure 2 depicts a very simple resource tree containing only two resource objects, a menu, and
a string table. Further, the menu and string table have only one item each. Yet, you can see
how complicated the resource tree becomes--even with as few resources as this.

At the root of the tree, the first directory has one entry for each type of resource the file
contains, no matter how many of each type there are. In Figure 2, there are two entries
identified by the root, one for the menu and one for the string table. If there had been one or
more dialog resources included in the file, the root node would have had one more entry and,
consequently, another branch for the dialog resources.

The basic resource types are identified in the file WINUSER.H and are listed below:

WINUSER.H

/*
 * Predefined Resource Types
 */
#define RT_CURSOR MAKEINTRESOURCE(1)
#define RT_BITMAP MAKEINTRESOURCE(2)
#define RT_ICON MAKEINTRESOURCE(3)

Page 17 of 29The Portable Executable File Format from Top to Bottom

2005-11-22http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

#define RT_MENU MAKEINTRESOURCE(4)
#define RT_DIALOG MAKEINTRESOURCE(5)
#define RT_STRING MAKEINTRESOURCE(6)
#define RT_FONTDIR MAKEINTRESOURCE(7)
#define RT_FONT MAKEINTRESOURCE(8)
#define RT_ACCELERATOR MAKEINTRESOURCE(9)
#define RT_RCDATA MAKEINTRESOURCE(10)
#define RT_MESSAGETABLE MAKEINTRESOURCE(11)

At the top level of the tree, the MAKEINTRESOURCE values listed above are placed in the Name
field of each type entry, identifying the different resources by type.

Each of the entries in the root directory points to a sibling node in the second level of the tree.
These nodes are directories, too, each having their own entries. At this level, the directories are
used to identify the name of each resource within a given type. If you had multiple menus
defined in your application, there would be an entry for each one here at the second level of the
tree.

As you are probably already aware, resources can be identified by name or by integer. They are
distinguished in this level of the tree via the Name field in the directory structure. If the most
significant bit of the Name field is set, the other 31 bits are used as an offset to an
IMAGE_RESOURCE_DIR_STRING_U structure.

WINNT.H

typedef struct _IMAGE_RESOURCE_DIR_STRING_U {
 USHORT Length;
 WCHAR NameString[1];
} IMAGE_RESOURCE_DIR_STRING_U, *PIMAGE_RESOURCE_DIR_STRING_U;

This structure is simply a 2-byte Length field followed by Length UNICODE characters.

On the other hand, if the most significant bit of the Name field is clear, the lower 31 bits are
used to represent the integer ID of the resource. Figure 2 shows the menu resource as a named
resource and the string table as an ID resource.

If there were two menu resources, one identified by name and one by resource, they would
both have entries immediately after the menu resource directory. The named resource entry
would appear first, followed by the integer-identified resource. The directory fields
NumberOfNamedEntries and NumberOfIdEntries would each contain the value 1, indicating the
presence of one entry.

Below level two, the resource tree does not branch out any further. Level one branches into
directories representing each type of resource, and level two branches into directories
representing each resource by identifier. Level three maps a one-to-one correspondence
between the individually identified resources and their respective language IDs. To indicate the
language ID of a resource, the Name field of the directory entry structure is used to indicate
both the primary language and sublanguage ID for the resource. The Win32 SDK for Windows
NT lists the default value resources. For the value 0x0409, 0x09 represents the primary
language as LANG_ENGLISH, and 0x04 is defined as SUBLANG_ENGLISH_CAN for the
sublanguage. The entire set of language IDs is defined in the file WINNT.H, included as part of
the Win32 SDK for Windows NT.

Since the language ID node is the last directory node in the tree, the OffsetToData field in the
entry structure is an offset to a leaf node--the IMAGE_RESOURCE_DATA_ENTRY structure
mentioned earlier.

Referring back to Figure 2, you can see one data entry node for each language directory entry.
This node simply indicates the size of the resource data and the relative virtual address where

Page 18 of 29The Portable Executable File Format from Top to Bottom

2005-11-22http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

the resource data is located.

One advantage to having so much structure to the resource data section, .rsrc, is that you can
glean a great deal of information from the section without accessing the resources themselves.
For example, you can find out how many there are of each type of resource, what resources--if
any--use a particular language ID, whether a particular resource exists or not, and the size of
individual types of resources. To demonstrate how to make use of this information, the
following function shows how to determine the different types of resources a file includes:

PEFILE.C

int WINAPI GetListOfResourceTypes (
 LPVOID lpFile,
 HANDLE hHeap,
 char **pszResTypes)
{
 PIMAGE_RESOURCE_DIRECTORY prdRoot;
 PIMAGE_RESOURCE_DIRECTORY_ENTRY prde;
 char *pMem;
 int nCnt, i;

 /* Get root directory of resource tree. */
 if ((prdRoot = PIMAGE_RESOURCE_DIRECTORY)ImageDirectoryOffset
 (lpFile, IMAGE_DIRECTORY_ENTRY_RESOURCE)) == NULL)
 return 0;

 /* Allocate enough space from heap to cover all types. */
 nCnt = prdRoot->NumberOfIdEntries * (MAXRESOURCENAME + 1);
 *pszResTypes = (char *)HeapAlloc (hHeap,
 HEAP_ZERO_MEMORY,
 nCnt);
 if ((pMem = *pszResTypes) == NULL)
 return 0;

 /* Set pointer to first resource type entry. */
 prde = (PIMAGE_RESOURCE_DIRECTORY_ENTRY)((DWORD)prdRoot +
 sizeof (IMAGE_RESOURCE_DIRECTORY));

 /* Loop through all resource directory entry types. */
 for (i=0; i<prdRoot->NumberOfIdEntries; i++)
 {
 if (LoadString (hDll, prde->Name, pMem, MAXRESOURCENAME))
 pMem += strlen (pMem) + 1;

 prde++;
 }

 return nCnt;
}

This function returns a list of resource type names in the string identified by pszResTypes.
Notice that, at the heart of this function, LoadString is called using the Name field of each
resource type directory entry as the string ID. If you look in the PEFILE.RC, you'll see that I
defined a series of resource type strings whose IDs are defined the same as the type specifiers
in the directory entries. There is also a function in PEFILE.DLL that returns the total number of
resource objects in the .rsrc section. It would be rather easy to expand on these functions or
write new functions that extracted other information from this section.

Export data section, .edata

Page 19 of 29The Portable Executable File Format from Top to Bottom

2005-11-22http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

The .edata section contains export data for an application or DLL. When present, this section
contains an export directory for getting to the export information.

WINNT.H

typedef struct _IMAGE_EXPORT_DIRECTORY {
 ULONG Characteristics;
 ULONG TimeDateStamp;
 USHORT MajorVersion;
 USHORT MinorVersion;
 ULONG Name;
 ULONG Base;
 ULONG NumberOfFunctions;
 ULONG NumberOfNames;
 PULONG *AddressOfFunctions;
 PULONG *AddressOfNames;
 PUSHORT *AddressOfNameOrdinals;
} IMAGE_EXPORT_DIRECTORY, *PIMAGE_EXPORT_DIRECTORY;

The Name field in the export directory identifies the name of the executable module.
NumberOfFunctions and NumberOfNames fields indicate how many functions and function
names are being exported from the module.

The AddressOfFunctions field is an offset to a list of exported function entry points. The
AddressOfNames field is the address of an offset to the beginning of a null-separated list of
exported function names. AddressOfNameOrdinals is an offset to a list of ordinal values (each 2
bytes long) for the same exported functions.

The three AddressOf... fields are relative virtual addresses into the address space of a process
once the module has been loaded. Once the module is loaded, the relative virtual address
should be added to the module base address to get the exact location in the address space of
the process. Before the file is loaded, however, the address can be determined by subtracting
the section header virtual address (VirtualAddress) from the given field address, adding the
section body offset (PointerToRawData) to the result, and then using this value as an offset into
the image file. The following example illustrates this technique:

PEFILE.C

int WINAPI GetExportFunctionNames (
 LPVOID lpFile,
 HANDLE hHeap,
 char **pszFunctions)
{
 IMAGE_SECTION_HEADER sh;
 PIMAGE_EXPORT_DIRECTORY ped;
 char *pNames, *pCnt;
 int i, nCnt;

 /* Get section header and pointer to data directory
 for .edata section. */
 if ((ped = (PIMAGE_EXPORT_DIRECTORY)ImageDirectoryOffset
 (lpFile, IMAGE_DIRECTORY_ENTRY_EXPORT)) == NULL)
 return 0;
 GetSectionHdrByName (lpFile, &sh, ".edata");

 /* Determine the offset of the export function names. */
 pNames = (char *)(*(int *)((int)ped->AddressOfNames -
 (int)sh.VirtualAddress +
 (int)sh.PointerToRawData +
 (int)lpFile) -
 (int)sh.VirtualAddress +

Page 20 of 29The Portable Executable File Format from Top to Bottom

2005-11-22http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

 (int)sh.PointerToRawData +
 (int)lpFile);

 /* Figure out how much memory to allocate for all strings. */
 pCnt = pNames;
 for (i=0; i<(int)ped->NumberOfNames; i++)
 while (*pCnt++);
 nCnt = (int)(pCnt. pNames);

 /* Allocate memory off heap for function names. */
 *pszFunctions = HeapAlloc (hHeap, HEAP_ZERO_MEMORY, nCnt);

 /* Copy all strings to buffer. */
 CopyMemory ((LPVOID)*pszFunctions, (LPVOID)pNames, nCnt);

 return nCnt;
}

Notice that in this function the variable pNames is assigned by determining first the address of
the offset and then the actual offset location. Both the address of the offset and the offset itself
are relative virtual addresses and must be translated before being used, as the function
demonstrates. You could write a similar function to determine the ordinal values or entry points
of the functions, but why bother when I already did this for you? The
GetNumberOfExportedFunctions, GetExportFunctionEntryPoints, and
GetExportFunctionOrdinals functions also exist in the PEFILE.DLL.

Import data section, .idata

The .idata section is import data, including the import directory and import address name table.
Although an IMAGE_DIRECTORY_ENTRY_IMPORT directory is defined, no corresponding import
directory structure is included in the file WINNT.H. Instead, there are several other structures
called IMAGE_IMPORT_BY_NAME, IMAGE_THUNK_DATA, and IMAGE_IMPORT_DESCRIPTOR.
Personally, I couldn't make heads or tails of how these structures are supposed to correlate to
the .idata section, so I spent several hours deciphering the .idata section body and came up
with a much simpler structure. I named this structure
IMAGE_IMPORT_MODULE_DIRECTORY.

PEFILE.H

typedef struct tagImportDirectory
 {
 DWORD dwRVAFunctionNameList;
 DWORD dwUseless1;
 DWORD dwUseless2;
 DWORD dwRVAModuleName;
 DWORD dwRVAFunctionAddressList;
 }IMAGE_IMPORT_MODULE_DIRECTORY,
 * PIMAGE_IMPORT_MODULE_DIRECTORY;

Unlike the data directories of other sections, this one repeats one after another for each
imported module in the file. Think of it as an entry in a list of module data directories, rather
than a data directory to the entire section of data. Each entry is a directory to the import
information for a specific module.

One of the fields in the IMAGE_IMPORT_MODULE_DIRECTORY structure is
dwRVAModuleName, a relative virtual address pointing to the name of the module. There are
also two dwUseless parameters in the structure that serve as padding to keep the structure
aligned properly within the section. The PE file format specification mentions something about
import flags, a time/date stamp, and major/minor versions, but these two fields remained
empty throughout my experimentation, so I still consider them useless.

Page 21 of 29The Portable Executable File Format from Top to Bottom

2005-11-22http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

Based on the definition of this structure, you can retrieve the names of modules and all
functions in each module that are imported by an executable file. The following function
demonstrates how to retrieve all the module names imported by a particular PE file:

PEFILE.C

int WINAPI GetImportModuleNames (
 LPVOID lpFile,
 HANDLE hHeap,
 char **pszModules)
{
 PIMAGE_IMPORT_MODULE_DIRECTORY pid;
 IMAGE_SECTION_HEADER idsh;
 BYTE *pData;
 int nCnt = 0, nSize = 0, i;
 char *pModule[1024];
 char *psz;

 pid = (PIMAGE_IMPORT_MODULE_DIRECTORY)ImageDirectoryOffset
 (lpFile, IMAGE_DIRECTORY_ENTRY_IMPORT);
 pData = (BYTE *)pid;

 /* Locate section header for ".idata" section. */
 if (!GetSectionHdrByName (lpFile, &idsh, ".idata"))
 return 0;

 /* Extract all import modules. */
 while (pid->dwRVAModuleName)
 {
 /* Allocate buffer for absolute string offsets. */
 pModule[nCnt] = (char *)(pData +
 (pid->dwRVAModuleName-idsh.VirtualAddress));
 nSize += strlen (pModule[nCnt]) + 1;

 /* Increment to the next import directory entry. */
 pid++;
 nCnt++;
 }

 /* Copy all strings to one chunk of heap memory. */
 *pszModules = HeapAlloc (hHeap, HEAP_ZERO_MEMORY, nSize);
 psz = *pszModules;
 for (i=0; i<nCnt; i++)
 {
 strcpy (psz, pModule[i]);
 psz += strlen (psz) + 1;
 }

 return nCnt;
}

The function is pretty straightforward. However, one thing is worth pointing out--notice the
while loop. This loop is terminated when pid->dwRVAModuleName is 0. Implied here is that at
the end of the list of IMAGE_IMPORT_MODULE_DIRECTORY structures is a null structure
that has a value of 0 for at least the dwRVAModuleName field. This is the behavior I observed in
my experimentation with the file and later confirmed in the PE file format specification.

The first field in the structure, dwRVAFunctionNameList, is a relative virtual address to a list of
relative virtual addresses that each point to the function names within the file. As shown in the
following data, the module and function names of all imported modules are listed in the .idata
section data:

Page 22 of 29The Portable Executable File Format from Top to Bottom

2005-11-22http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

E6A7 0000 F6A7 0000 08A8 0000 1AA8 0000
28A8 0000 3CA8 0000 4CA8 0000 0000 0000 (...<...L.......
0000 4765 744F 7065 6E46 696C 654E 616D ..GetOpenFileNam
6541 0000 636F 6D64 6C67 3332 2E64 6C6C eA..comdlg32.dll
0000 2500 4372 6561 7465 466F 6E74 496E ..%.CreateFontIn
6469 7265 6374 4100 4744 4933 322E 646C directA.GDI32.dl
6C00 A000 4765 7444 6576 6963 6543 6170 l...GetDeviceCap
7300 C600 4765 7453 746F 636B 4F62 6A65 s...GetStockObje
6374 0000 D500 4765 7454 6578 744D 6574 ct....GetTextMet
7269 6373 4100 1001 5365 6C65 6374 4F62 ricsA...SelectOb
6A65 6374 0000 1601 5365 7442 6B43 6F6C ject....SetBkCol
6F72 0000 3501 5365 7454 6578 7443 6F6C or..5.SetTextCol
6F72 0000 4501 5465 7874 4F75 7441 0000 or..E.TextOutA..

The above data is a portion taken from the .idata section of the EXEVIEW.EXE sample
application. This particular section represents the beginning of the list of import module and
function names. If you begin examining the right section part of the data, you should recognize
the names of familiar Win32 API functions and the module names they are found in. Reading
from the top down, you get GetOpenFileNameA, followed by the module name
COMDLG32.DLL. Shortly after that, you get CreateFontIndirectA, followed by the module
GDI32.DLL and then the functions GetDeviceCaps, GetStockObject, GetTextMetrics, and so
forth.

This pattern repeats throughout the .idata section. The first module name is COMDLG32.DLL
and the second is GDI32.DLL. Notice that only one function is imported from the first module,
while many functions are imported from the second module. In both cases, the function names
and the module name to which they belong are ordered such that a function name appears
first, followed by the module name and then by the rest of the function names, if any.

The following function demonstrates how to retrieve the function names for a specific module:

PEFILE.C

int WINAPI GetImportFunctionNamesByModule (
 LPVOID lpFile,
 HANDLE hHeap,
 char *pszModule,
 char **pszFunctions)
{
 PIMAGE_IMPORT_MODULE_DIRECTORY pid;
 IMAGE_SECTION_HEADER idsh;
 DWORD dwBase;
 int nCnt = 0, nSize = 0;
 DWORD dwFunction;
 char *psz;

 /* Locate section header for ".idata" section. */
 if (!GetSectionHdrByName (lpFile, &idsh, ".idata"))
 return 0;

 pid = (PIMAGE_IMPORT_MODULE_DIRECTORY)ImageDirectoryOffset
 (lpFile, IMAGE_DIRECTORY_ENTRY_IMPORT);

 dwBase = ((DWORD)pid. idsh.VirtualAddress);

 /* Find module's pid. */
 while (pid->dwRVAModuleName &&
 strcmp (pszModule,
 (char *)(pid->dwRVAModuleName+dwBase)))
 pid++;

Page 23 of 29The Portable Executable File Format from Top to Bottom

2005-11-22http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

 /* Exit if the module is not found. */
 if (!pid->dwRVAModuleName)
 return 0;

 /* Count number of function names and length of strings. */
 dwFunction = pid->dwRVAFunctionNameList;
 while (dwFunction &&
 *(DWORD *)(dwFunction + dwBase) &&
 *(char *)((*(DWORD *)(dwFunction + dwBase)) +
 dwBase+2))
 {
 nSize += strlen ((char *)((*(DWORD *)(dwFunction +
 dwBase)) + dwBase+2)) + 1;
 dwFunction += 4;
 nCnt++;
 }

 /* Allocate memory off heap for function names. */
 *pszFunctions = HeapAlloc (hHeap, HEAP_ZERO_MEMORY, nSize);
 psz = *pszFunctions;

 /* Copy function names to memory pointer. */
 dwFunction = pid->dwRVAFunctionNameList;
 while (dwFunction &&
 *(DWORD *)(dwFunction + dwBase) &&
 *((char *)((*(DWORD *)(dwFunction + dwBase)) +
 dwBase+2)))
 {
 strcpy (psz, (char *)((*(DWORD *)(dwFunction + dwBase)) +
 dwBase+2));
 psz += strlen((char *)((*(DWORD *)(dwFunction + dwBase))+
 dwBase+2)) + 1;
 dwFunction += 4;
 }

 return nCnt;
}

Like the GetImportModuleNames function, this function relies on the end of each list of
information to have a zeroed entry. In this case, the list of function names ends with one that is
zero.

The final field, dwRVAFunctionAddressList, is a relative virtual address to a list of virtual
addresses that will be placed in the section data by the loader when the file is loaded. Before
the file is loaded, however, these virtual addresses are replaced by relative virtual addresses
that correspond exactly to the list of function names. So before the file is loaded, there are two
identical lists of relative virtual addresses pointing to imported function names.

Debug information section, .debug

Debug information is initially placed in the .debug section. The PE file format also supports
separate debug files (normally identified with a .DBG extension) as a means of collecting debug
information in a central location. The debug section contains the debug information, but the
debug directories live in the .rdata section mentioned earlier. Each of those directories
references debug information in the .debug section. The debug directory structure is defined as
an IMAGE_DEBUG_DIRECTORY, as follows:

WINNT.H

typedef struct _IMAGE_DEBUG_DIRECTORY {
 ULONG Characteristics;

Page 24 of 29The Portable Executable File Format from Top to Bottom

2005-11-22http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

 ULONG TimeDateStamp;
 USHORT MajorVersion;
 USHORT MinorVersion;
 ULONG Type;
 ULONG SizeOfData;
 ULONG AddressOfRawData;
 ULONG PointerToRawData;
} IMAGE_DEBUG_DIRECTORY, *PIMAGE_DEBUG_DIRECTORY;

The section is divided into separate portions of data representing different types of debug
information. For each one there is a debug directory described above. The different types of
debug information are listed below:

WINNT.H

#define IMAGE_DEBUG_TYPE_UNKNOWN 0
#define IMAGE_DEBUG_TYPE_COFF 1
#define IMAGE_DEBUG_TYPE_CODEVIEW 2
#define IMAGE_DEBUG_TYPE_FPO 3
#define IMAGE_DEBUG_TYPE_MISC 4

The Type field in each directory indicates which type of debug information the directory
represents. As you can see in the list above, the PE file format supports many different types of
debug information, as well as some other informational fields. Of those, the
IMAGE_DEBUG_TYPE_MISC information is unique. This information was added to represent
miscellaneous information about the executable image that could not be added to any of the
more structured data sections in the PE file format. This is the only location in the image file
where the image name is sure to appear. If an image exports information, the export data
section will also include the image name.

Each type of debug information has its own header structure that defines its data. Each of these
is listed in the file WINNT.H. One nice thing about the IMAGE_DEBUG_DIRECTORY structure
is that it includes two fields that identify the debug information. The first of these,
AddressOfRawData, is the relative virtual address of the data once the file is loaded. The other,
PointerToRawData, is an actual offset within the PE file, where the data is located. This makes it
easy to locate specific debug information.

As a last example, consider the following function, which extracts the image name from the
IMAGE_DEBUG_MISC structure:

PEFILE.C

int WINAPI RetrieveModuleName (
 LPVOID lpFile,
 HANDLE hHeap,
 char **pszModule)
{

 PIMAGE_DEBUG_DIRECTORY pdd;
 PIMAGE_DEBUG_MISC pdm = NULL;
 int nCnt;

 if (!(pdd = (PIMAGE_DEBUG_DIRECTORY)ImageDirectoryOffset
 (lpFile, IMAGE_DIRECTORY_ENTRY_DEBUG)))
 return 0;

 while (pdd->SizeOfData)
 {
 if (pdd->Type == IMAGE_DEBUG_TYPE_MISC)
 {
 pdm = (PIMAGE_DEBUG_MISC)

Page 25 of 29The Portable Executable File Format from Top to Bottom

2005-11-22http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

 ((DWORD)pdd->PointerToRawData + (DWORD)lpFile);

 nCnt = lstrlen (pdm->Data)*(pdm->Unicode?2:1);
 *pszModule = (char *)HeapAlloc (hHeap,
 HEAP_ZERO_MEMORY,
 nCnt+1;
 CopyMemory (*pszModule, pdm->Data, nCnt);

 break;
 }

 pdd ++;
 }

 if (pdm != NULL)
 return nCnt;
 else
 return 0;
}

As you can see, the structure of the debug directory makes it relatively easy to locate a specific
type of debug information. Once the IMAGE_DEBUG_MISC structure is located, extracting the
image name is as simple as invoking the CopyMemory function.

As mentioned above, debug information can be stripped into separate .DBG files. The Windows
NT SDK includes a utility called REBASE.EXE that serves this purpose. For example, in the
following statement an executable image named TEST.EXE is being stripped of debug
information:

rebase -b 40000 -x c:\samples\testdir test.exe

The debug information is placed in a new file called TEST.DBG and located in the path specified,
in this case c:\samples\testdir. The file begins with a single
IMAGE_SEPARATE_DEBUG_HEADER structure, followed by a copy of the section headers
that exist in the stripped executable image. Then the .debug section data follows the section
headers. So, right after the section headers are the series of IMAGE_DEBUG_DIRECTORY
structures and their associated data. The debug information itself retains the same structure as
described above for normal image file debug information.

Summary of the PE File Format

The PE file format for Windows NT introduces a completely new structure to developers familiar
with the Windows and MS-DOS environments. Yet developers familiar with the UNIX
environment will find that the PE file format is similar to, if not based on, the COFF
specification.

The entire format consists of an MS-DOS MZ header, followed by a real-mode stub program,
the PE file signature, the PE file header, the PE optional header, all of the section headers, and
finally, all of the section bodies.

The optional header ends with an array of data directory entries that are relative virtual
addresses to data directories contained within section bodies. Each data directory indicates how
a specific section body's data is structured.

The PE file format has eleven predefined sections, as is common to applications for Windows
NT, but each application can define its own unique sections for code and data.

The .debug predefined section also has the capability of being stripped from the file into a
separate debug file. If so, a special debug header is used to parse the debug file, and a flag is

Page 26 of 29The Portable Executable File Format from Top to Bottom

2005-11-22http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

specified in the PE file header to indicate that the debug data has been stripped.

PEFILE.DLL Function Descriptions

PEFILE.DLL consists mainly of functions that either retrieve an offset into a given PE file or copy
a portion of the file data to a specific structure. Each function has a single requirement--the first
parameter is a pointer to the beginning of the PE file. That is, the file must first be memory-
mapped into the address space of your process, and the base location of the file mapping is the
value lpFile that you pass as the first parameter to every function.

The function names are meant to be self-explanatory, and each function is listed with a brief
comment describing its purpose. If, after reading through the list of functions, you cannot
determine what a function is for, refer to the EXEVIEW.EXE sample application to find an
example of how the function is used. The following list of function prototypes can also be found
in PEFILE.H:

PEFILE.H

/* Retrieve a pointer offset to the MS-DOS MZ header. */
BOOL WINAPI GetDosHeader (LPVOID, PIMAGE_DOS_HEADER);

/* Determine the type of an .EXE file. */
DWORD WINAPI ImageFileType (LPVOID);

/* Retrieve a pointer offset to the PE file header. */
BOOL WINAPI GetPEFileHeader (LPVOID, PIMAGE_FILE_HEADER);

/* Retrieve a pointer offset to the PE optional header .*/
BOOL WINAPI GetPEOptionalHeader (LPVOID,
 PIMAGE_OPTIONAL_HEADER);

/* Return the address of the module entry point. */
LPVOID WINAPI GetModuleEntryPoint (LPVOID);

/* Return a count of the number of sections in the file. */
int WINAPI NumOfSections (LPVOID);

/* Return the desired base address of the executable when
 it is loaded into a process's address space. */
LPVOID WINAPI GetImageBase (LPVOID);

/* Determine the location within the file of a specific
 image data directory. */
LPVOID WINAPI ImageDirectoryOffset (LPVOID, DWORD);

/* Function retrieve names of all the sections in the file. */
int WINAPI GetSectionNames (LPVOID, HANDLE, char **);

/* Copy the section header information for a specific section. */
BOOL WINAPI GetSectionHdrByName (LPVOID,
 PIMAGE_SECTION_HEADER, char *);

/* Get null-separated list of import module names. */
int WINAPI GetImportModuleNames (LPVOID, HANDLE, char **);

/* Get null-separated list of import functions for a module. */
int WINAPI GetImportFunctionNamesByModule (LPVOID, HANDLE,
 char *, char **);

/* Get null-separated list of exported function names. */
int WINAPI GetExportFunctionNames (LPVOID, HANDLE, char **);

Page 27 of 29The Portable Executable File Format from Top to Bottom

2005-11-22http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

/* Get number of exported functions. */
int WINAPI GetNumberOfExportedFunctions (LPVOID);

/* Get list of exported function virtual address entry points. */
LPVOID WINAPI GetExportFunctionEntryPoints (LPVOID);

/* Get list of exported function ordinal values. */
LPVOID WINAPI GetExportFunctionOrdinals (LPVOID);

/* Determine total number of resource objects. */
int WINAPI GetNumberOfResources (LPVOID);

/* Return list of all resource object types used in file. */
int WINAPI GetListOfResourceTypes (LPVOID, HANDLE, char **);

/* Determine if debug information has been removed from file. */
BOOL WINAPI IsDebugInfoStripped (LPVOID);

/* Get name of image file. */
int WINAPI RetrieveModuleName (LPVOID, HANDLE, char **);

/* Function determines if the file is a valid debug file. */
BOOL WINAPI IsDebugFile (LPVOID);

/* Function returns debug header from debug file. */
BOOL WINAPI GetSeparateDebugHeader(LPVOID,
 PIMAGE_SEPARATE_DEBUG_HEADER);

In addition to the functions listed above, the macros mentioned earlier in this article are also
defined in the PEFILE.H file. The complete list is as follows:

/* Offset to PE file signature */
#define NTSIGNATURE(a) ((LPVOID)((BYTE *)a + \
 ((PIMAGE_DOS_HEADER)a)->e_lfanew))

/* MS-OS header identifies the NT PEFile signature dword;
 the PEFILE header exists just after that dword. */
#define PEFHDROFFSET(a) ((LPVOID)((BYTE *)a + \
 ((PIMAGE_DOS_HEADER)a)->e_lfanew + \
 SIZE_OF_NT_SIGNATURE))

/* PE optional header is immediately after PEFile header. */
#define OPTHDROFFSET(a) ((LPVOID)((BYTE *)a + \
 ((PIMAGE_DOS_HEADER)a)->e_lfanew + \
 SIZE_OF_NT_SIGNATURE + \
 sizeof (IMAGE_FILE_HEADER)))

/* Section headers are immediately after PE optional header. */
#define SECHDROFFSET(a) ((LPVOID)((BYTE *)a + \
 ((PIMAGE_DOS_HEADER)a)->e_lfanew + \
 SIZE_OF_NT_SIGNATURE + \
 sizeof (IMAGE_FILE_HEADER) + \
 sizeof (IMAGE_OPTIONAL_HEADER)))

To use PEFILE.DLL, simply include the header file PEFILE.H and link the DLL to your application.
All of the functions are mutually exclusive functions, but some were written as much to support
others as for the information they provide. For example, the function GetSectionNames is
useful for getting the exact names of all sections. Yet to be able to retrieve the section header
for a unique section name (one defined by the application developer during compile), you would
first have to get the list of names and then call the function GetSectionHeaderByName with
the exact name of the section. Enjoy!

Page 28 of 29The Portable Executable File Format from Top to Bottom

2005-11-22http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

© 1997 Microsoft Corporation. All rights reserved. Legal Notices

Page 29 of 29The Portable Executable File Format from Top to Bottom

2005-11-22http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

