

==
 OLD-STYLE HEADER EXTENSIONS
==

The old-style header contains information the loader expects for an MS-DOS
executable file. It describes a stub program (WINSTUB) the loader can
place in memory when necessary, it points to the new-style header, and
it contains the stub programs relocation table.

The following illustrates the distinct parts of the old-style
executable format:

 +-------------------------+
 00h | Old-style header info |
 +-------------------------+
 20h | Reserved |
 +-------------------------+
 3Ch | Offset to segmented |
 | .EXE header |
 +-------------------------+
 40h | Relocation table and |
 | MS-DOS stub program |
 +-------------------------+
 | Segmented .EXE Header |
 | . |
 | . |
 | . |

The word at offset 18h in the old-style .EXE header contains the
relative byte offset to the stub program's relocation table. If this
offset is 40h, then the double word at offset 3Ch is assumed to be the
relative byte offset from the beginning of the file to the beginning
of the segmented executable header. A new-format .EXE file is
identified if the segmented executable header contains a valid
signature. If the signature is not valid, the file is assumed to be an
old-style format .EXE file. The remainder of the old-style format
header will describe an MS-DOS program, the stub. The stub may be any
valid program but will typically be a program that displays an error
message.

==
 SEGMENTED EXE FORMAT
==

Because Windows executable files are often larger than one segment
(64K), additional information (that does not appear in the old-style
header) is required so that the loader can load each segment properly.
The segmented EXE format was developed to provide the loader with this
information.

The segmented .EXE file has the following format:

 +-----------------+
 00h | Old-style EXE |
 | Header |
 +-----------------+
 20h | Reserved |
 +-----------------+
 3Ch | Offset to | ---+
 | Segmented Header| |
 +-----------------+ |
 40h | Relocation Table| |
 | & Stub Program | |
 +-----------------+ |
 | | |
 +-----------------+ |
 xxh | Segmented EXE | <--+
 | Header |
 +-----------------+
 | Segment Table |
 +-----------------+
 | Resource Table |
 +-----------------+

Page 1 of 8Executable-File Header Format

2005-11-22http://support.microsoft.com/default.aspx?scid=kb;EN-US;q65122

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q65122

 | Resident Name |
 | Table |
 +-----------------+
 | Module Reference|
 | Table |
 +-----------------+
 | Imported Names |
 | Table |
 +-----------------+
 | Entry Table |
 +-----------------+
 | Non-Resident |
 | Name Table |
 +-----------------+
 | Seg #1 Data |
 | Seg #1 Info |
 +-----------------+
 .
 .
 .
 +-----------------+
 | Seg #n Data |
 | Seg #n Info |
 +-----------------+

The following sections describe each of the components that make up
the segmented EXE format. Each section contains a description of the
component and the fields in the structures that make up that
component.

NOTE: All unused fields and flag bits are reserved for future use and
must contain 0 (zero) values.

==
 SEGMENTED EXE HEADER
==

The segmented EXE header contains general information about the EXE
file and contains information on the location and size of the other
sections. The Windows loader copies this section, along with other
data, into the module table in the system data. The module table is
internal data used by the loader to manage the loaded executable
modules in the system and to support dynamic linking.

The following describes the format of the segmented executable header.
For each field, the offset is given relative to the beginning of the
segmented header, the size of the field is defined, and a description
is given.

 Offset Size Description
 ------ ---- -----------

 00h DW Signature word.
 "N" is low-order byte.
 "E" is high-order byte.

 02h DB Version number of the linker.

 03h DB Revision number of the linker.

 04h DW Entry Table file offset, relative to the beginning of
 the segmented EXE header.
 06h DW Number of bytes in the entry table.

 08h DD 32-bit CRC of entire contents of file.
 These words are taken as 00 during the calculation.

 0Ch DW Flag word.
 0000h = NOAUTODATA
 0001h = SINGLEDATA (Shared automatic data segment)
 0002h = MULTIPLEDATA (Instanced automatic data
 segment)
 2000h = Errors detected at link time, module will not
 load.

Page 2 of 8Executable-File Header Format

2005-11-22http://support.microsoft.com/default.aspx?scid=kb;EN-US;q65122

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q65122

 8000h = Library module.
 The SS:SP information is invalid, CS:IP points
 to an initialization procedure that is called
 with AX equal to the module handle. This
 initialization procedure must perform a far
 return to the caller, with AX not equal to
 zero to indicate success, or AX equal to zero
 to indicate failure to initialize. DS is set
 to the library's data segment if the
 SINGLEDATA flag is set. Otherwise, DS is set
 to the caller's data segment.

 A program or DLL can only contain dynamic
 links to executable files that have this
 library module flag set. One program cannot
 dynamic-link to another program.

 0Eh DW Segment number of automatic data segment.
 This value is set to zero if SINGLEDATA and
 MULTIPLEDATA flag bits are clear, NOAUTODATA is
 indicated in the flags word.

 A Segment number is an index into the module's segment
 table. The first entry in the segment table is segment
 number 1.

 10h DW Initial size, in bytes, of dynamic heap added to the
 data segment. This value is zero if no initial local
 heap is allocated.

 12h DW Initial size, in bytes, of stack added to the data
 segment. This value is zero to indicate no initial
 stack allocation, or when SS is not equal to DS.

 14h DD Segment number:offset of CS:IP.

 18h DD Segment number:offset of SS:SP.
 If SS equals the automatic data segment and SP equals
 zero, the stack pointer is set to the top of the
 automatic data segment just below the additional heap
 area.

 +--------------------------+
 | additional dynamic heap |
 +--------------------------+ <- SP
 | additional stack |
 +--------------------------+
 | loaded auto data segment |
 +--------------------------+ <- DS, SS

 1Ch DW Number of entries in the Segment Table.

 1Eh DW Number of entries in the Module Reference Table.
 20h DW Number of bytes in the Non-Resident Name Table.

 22h DW Segment Table file offset, relative to the beginning
 of the segmented EXE header.

 24h DW Resource Table file offset, relative to the beginning
 of the segmented EXE header.

 26h DW Resident Name Table file offset, relative to the
 beginning of the segmented EXE header.

 28h DW Module Reference Table file offset, relative to the
 beginning of the segmented EXE header.

 2Ah DW Imported Names Table file offset, relative to the
 beginning of the segmented EXE header.

 2Ch DD Non-Resident Name Table offset, relative to the
 beginning of the file.

 30h DW Number of movable entries in the Entry Table.

Page 3 of 8Executable-File Header Format

2005-11-22http://support.microsoft.com/default.aspx?scid=kb;EN-US;q65122

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q65122

 32h DW Logical sector alignment shift count, log(base 2) of
 the segment sector size (default 9).

 34h DW Number of resource entries.

 36h DB Executable type, used by loader.
 02h = WINDOWS

 37h-3Fh DB Reserved, currently 0's.

==
 SEGMENT TABLE
==

The segment table contains an entry for each segment in the executable
file. The number of segment table entries are defined in the segmented
EXE header. The first entry in the segment table is segment number 1.
The following is the structure of a segment table entry.

 Size Description
 ---- -----------

 DW Logical-sector offset (n byte) to the contents of the segment
 data, relative to the beginning of the file. Zero means no
 file data.

 DW Length of the segment in the file, in bytes. Zero means 64K.

 DW Flag word.
 0007h = TYPE_MASK Segment-type field.
 0000h = CODE Code-segment type.
 0001h = DATA Data-segment type.
 0010h = MOVEABLE Segment is not fixed.
 0040h = PRELOAD Segment will be preloaded; read-only if
 this is a data segment.
 0100h = RELOCINFO Set if segment has relocation records.
 F000h = DISCARD Discard priority.

 DW Minimum allocation size of the segment, in bytes. Total size
 of the segment. Zero means 64K.

==
 RESOURCE TABLE
==

The resource table follows the segment table and contains entries for
each resource in the executable file. The resource table consists of
an alignment shift count, followed by a table of resource records. The
resource records define the type ID for a set of resources. Each
resource record contains a table of resource entries of the defined
type. The resource entry defines the resource ID or name ID for the
resource. It also defines the location and size of the resource. The
following describes the contents of each of these structures:

 Size Description
 ---- -----------

 DW Alignment shift count for resource data.

 A table of resource type information blocks follows. The following
 is the format of each type information block:

 DW Type ID. This is an integer type if the high-order bit is
 set (8000h); otherwise, it is an offset to the type string,
 the offset is relative to the beginning of the resource
 table. A zero type ID marks the end of the resource type
 information blocks.

 DW Number of resources for this type.

 DD Reserved.

 A table of resources for this type follows. The following is

Page 4 of 8Executable-File Header Format

2005-11-22http://support.microsoft.com/default.aspx?scid=kb;EN-US;q65122

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q65122

 the format of each resource (8 bytes each):

 DW File offset to the contents of the resource data,
 relative to beginning of file. The offset is in terms
 of the alignment shift count value specified at
 beginning of the resource table.

 DW Length of the resource in the file (in bytes).

 DW Flag word.
 0010h = MOVEABLE Resource is not fixed.
 0020h = PURE Resource can be shared.
 0040h = PRELOAD Resource is preloaded.

 DW Resource ID. This is an integer type if the high-order
 bit is set (8000h), otherwise it is the offset to the
 resource string, the offset is relative to the
 beginning of the resource table.

 DD Reserved.

 Resource type and name strings are stored at the end of the
 resource table. Note that these strings are NOT null terminated and
 are case sensitive.

 DB Length of the type or name string that follows. A zero value
 indicates the end of the resource type and name string, also
 the end of the resource table.

 DB ASCII text of the type or name string.

==
 RESIDENT-NAME TABLE
==

The resident-name table follows the resource table, and contains this
module's name string and resident exported procedure name strings. The
first string in this table is this module's name. These name strings
are case-sensitive and are not null-terminated. The following
describes the format of the name strings:

 Size Description
 ---- -----------

 DB Length of the name string that follows. A zero value indicates
 the end of the name table.

 DB ASCII text of the name string.

 DW Ordinal number (index into entry table). This value is ignored
 for the module name.

==
 MODULE-REFERENCE TABLE
==

The module-reference table follows the resident-name table. Each entry
contains an offset for the module-name string within the imported-
names table; each entry is 2 bytes long.

 Size Description
 ---- -----------

 DW Offset within Imported Names Table to referenced module name
 string.

==
 IMPORTED-NAME TABLE
==

The imported-name table follows the module-reference table. This table
contains the names of modules and procedures that are imported by the

Page 5 of 8Executable-File Header Format

2005-11-22http://support.microsoft.com/default.aspx?scid=kb;EN-US;q65122

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q65122

executable file. Each entry is composed of a 1-byte field that
contains the length of the string, followed by any number of
characters. The strings are not null-terminated and are case
sensitive.

 Size Description
 ---- -----------

 DB Length of the name string that follows.

 DB ASCII text of the name string.

==
 ENTRY TABLE
==

The entry table follows the imported-name table. This table contains
bundles of entry-point definitions. Bundling is done to save space in
the entry table. The entry table is accessed by an ordinal value.
Ordinal number one is defined to index the first entry in the entry
table. To find an entry point, the bundles are scanned searching for a
specific entry point using an ordinal number. The ordinal number is
adjusted as each bundle is checked. When the bundle that contains the
entry point is found, the ordinal number is multiplied by the size of
the bundle's entries to index the proper entry.

The linker forms bundles in the most dense manner it can, under the
restriction that it cannot reorder entry points to improve bundling.
The reason for this restriction is that other .EXE files may refer to
entry points within this bundle by their ordinal number. The following
describes the format of the entry table bundles.

 Size Description
 ---- -----------

 DB Number of entries in this bundle. All records in one bundle
 are either moveable or refer to the same fixed segment. A zero
 value in this field indicates the end of the entry table.

 DB Segment indicator for this bundle. This defines the type of
 entry table entry data within the bundle. There are three
 types of entries that are defined.

 000h = Unused entries. There is no entry data in an unused
 bundle. The next bundle follows this field. This is
 used by the linker to skip ordinal numbers.

 001h-0FEh = Segment number for fixed segment entries. A fixed
 segment entry is 3 bytes long and has the following
 format.

 DB Flag word.
 01h = Set if the entry is exported.
 02h = Set if the entry uses a global (shared) data
 segments.
 The first assembly-language instruction in the
 entry point prologue must be "MOV AX,data
 segment number". This may be set only for
 SINGLEDATA library modules.

 DW Offset within segment to entry point.

 0FFH = Moveable segment entries. The entry data contains the
 segment number for the entry points. A moveable segment
 entry is 6 bytes long and has the following format.

 DB Flag word.
 01h = Set if the entry is exported.
 02h = Set if the entry uses a global (shared) data
 segments.

 INT 3FH.

 DB Segment number.

Page 6 of 8Executable-File Header Format

2005-11-22http://support.microsoft.com/default.aspx?scid=kb;EN-US;q65122

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q65122

 DW Offset within segment to entry point.

==
 NONRESIDENT-NAME TABLE
==

The nonresident-name table follows the entry table, and contains a
module description and nonresident exported procedure name strings.
The first string in this table is a module description. These name
strings are case-sensitive and are not null-terminated. The name
strings follow the same format as those defined in the resident name
table.

==
 PER SEGMENT DATA
==

The location and size of the per-segment data is defined in the
segment table entry for the segment. If the segment has relocation
fixups, as defined in the segment table entry flags, they directly
follow the segment data in the file. The relocation fixup information
is defined as follows:

 Size Description
 ---- -----------

 DW Number of relocation records that follow.

 A table of relocation records follows. The following is the format
 of each relocation record.

 DB Source type.
 0Fh = SOURCE_MASK
 00h = LOBYTE
 02h = SEGMENT
 03h = FAR_ADDR (32-bit pointer)
 05h = OFFSET (16-bit offset)

 DB Flags byte.
 03h = TARGET_MASK
 00h = INTERNALREF
 01h = IMPORTORDINAL
 02h = IMPORTNAME
 03h = OSFIXUP
 04h = ADDITIVE

 DW Offset within this segment of the source chain.
 If the ADDITIVE flag is set, then target value is added to
 the source contents, instead of replacing the source and
 following the chain. The source chain is an 0FFFFh
 terminated linked list within this segment of all
 references to the target.

 The target value has four types that are defined in the flag
 byte field. The following are the formats for each target
 type:

 INTERNALREF

 DB Segment number for a fixed segment, or 0FFh for a
 movable segment.

 DB 0

 DW Offset into segment if fixed segment, or ordinal
 number index into Entry Table if movable segment.

 IMPORTNAME

 DW Index into module reference table for the imported
 module.

Page 7 of 8Executable-File Header Format

2005-11-22http://support.microsoft.com/default.aspx?scid=kb;EN-US;q65122

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q65122

 DW Offset within Imported Names Table to procedure name
 string.

 IMPORTORDINAL

 DW Index into module reference table for the imported
 module.
 DW Procedure ordinal number.

 OSFIXUP

 DW Operating system fixup type.
 Floating-point fixups.
 0001h = FIARQQ, FJARQQ
 0002h = FISRQQ, FJSRQQ
 0003h = FICRQQ, FJCRQQ
 0004h = FIERQQ
 0005h = FIDRQQ
 0006h = FIWRQQ

 DW 0

==

Microsoft is a registered trademark and Windows is a trademark of
Microsoft Corporation.

Page 8 of 8Executable-File Header Format

2005-11-22http://support.microsoft.com/default.aspx?scid=kb;EN-US;q65122

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q65122

