CrCheck 5 Guide for End Users

Wording

/ CrCheck is used for the program/package crCheck Multi Platform version 5.xx in general
/ crcheck is the renamed program for the platform you want to use it

¥ CrCheck 5 Guide for End Users
= Wording
¥ Introduction
= Key Features of CrCheck
= Important Note: Incompatibility with CrCheck 4.xx
= Use Case/Business Case
= How CrCheck Works
¥ Getting Started
= [nstallation
= Usage
= Options
= Excluded Files
= CrCheck.txt file
= Known issues or bugs?
¥ Advanced Usage
= PGP/GPG Support
= Batch File Integration
= Error Levels
¥ Example Output
= License Terms for CrCheck
¥ Licensing Overview
= Freeware for Non-Commercial Use
= Commercial Use
= Summary of Licensing Model
= Registered vs. Unregistered Versions
= |ntellectual Property and Usage Restrictions

Conclusion

History

Overview of Hash Algorithms

<

Hash Algorithms supported by CrCheck
= 1. Adler32 (32 bit)

= 2. Castagnoli (32 bit)

= 3. CRC32 (IEEE) (32 bit)

= 4. MDS5 (128 bit)

= 5 SHA-1 (SHA-160, 160 bits)

= 6. SHA-2 (SHA-256, SHA-512 - 256 or 512 bits)
= 7. SHA-3 (256 bit implementation)

= 8. xxHash (64 bit)

= 9. RIPEMD-160 (160 bit)

= 10. BLAKE2 and BLAKES3 (256 bit)

= 11. BLAKE3-128 (128 bit)

¥ Additional Cryptographic Hash Overviews
= Whirlpool
= Tiger
= Skein
¥ Performance Comparison
= Summary Table of Hash Algorithms
= Hash Algorithms - Key Points
= Performance Ranking by Speed
= Reference: Empty Hashes
= End of documentation

Introduction

#2 CrCheck is a versatile and reliable command-line tool built to ensure file and directory integrity across multiple platforms and architectures. It
specializes in calculating checksums (hashes) and comparing them with known values to detect any signs of tampering, alteration, or corruption. Below is
a detailed guide to understanding and how to using CrCheck:

Key Features of CrCheck

» Cross-platform support: Works seamlessly on modern operating systems, making it a universal choice for file integrity verification. Modern design to
support multi-core systems.

o Comprehensive checksum algorithms: Utilizes multiple and robust hashing techniques (e.g., SHA-256, SHA-512) for high accuracy in detecting
changes.

» File and directory validation: Capable of working on both individual files and entire directories to provide a holistic integrity check.

» Successor to CrCheck 4.xx: A modern replacement for the legacy DOS version (4.xx), CrCheck 5.xx eliminates compatibility issues while introducing
advanced functionality.

@ Its the successor of CrCheck 4.xx for DOS which is incompatible with modern operating systems.

Important Note: Incompatibility with CrCheck 4.xx

¢ CrCheck 5.xx does not support checksum files generated by its predecessor CrCheck 4.xx/DOS. Likewise, checksum files created with version 5
cannot be verified using the older 4.xx version.

» This change is due to differences in hashing algorithms, filename handling, attributes and file formats between the two versions, reflecting the shift to
modern operating systems and security standards.

Use Case/Business Case
<~ CrCheck is a versatile tool with two primary use cases that address data integrity and verification needs:

1. File Verification for Tampering or Modification
In this use case, CrCheck is employed to ensure the integrity of files by checking if they have been altered or tampered with. A common
implementation is as follows:
o A checksum file (CrCheck.txt) is generated and provided alongside the files or archives.
o End users can use CrCheck to compare the hash values of their unpacked files with those in the checksum file to verify that the files have not
been corrupted or modified during transfer or unpacking by simply executing crcheck
« Example: ROSE SWE'’s leverages CrCheck to distribute checksum files with its archives, enabling users to validate the integrity of unpacked
data.
2. Checksum File Creation for Data Protection or Validation
This use case caters to individuals or organizations who want to proactively safeguard and validate their data. CrCheck is used to create a checksum
file for data stored in specific locations (e.g., cloud drives or local folders). The benefits include:
« Protection: Regularly verifying the checksum file ensures that the data remains unchanged over time.
« Validation: Facilitates easy detection of unintended modifications or corruption due to issues such as software bugs, unauthorized access, or
hardware failures.

+ Example: A user maintaining a folder in a cloud drive can periodically generate a checksum file using CrCheck and later revalidate their files to
confirm that no modifications have occurred.

These two scenarios highlight CrCheck’s utility in promoting data integrity, whether for end-user distribution or personal data management.

How CrCheck Works

CrCheck utilizes different sophisticated hash algorithms. These hash algorithms serve as unique fingerprints for your files. By comparing these fingerprints
against trusted values, you can ensure the integrity of your data.

In addition to hash fingerprint validation, CrCheck also verifies file length. This multi-faceted approach provides a comprehensive assessment of file
integrity.

Getting Started

Installation

1. Download the CrCheck MP archive from the official website.
2. Extract (unpack) the archive to a directory of your choice.

Usage

1. Open a command prompt or terminal window.
2. Navigate to the directory where you extracted the archive.
3. Rename one of the fitting executables to crcheck or crcheck.exe :
¥ crcheck-darwin-amd64
¥ crcheck-darwin-arm64
2k crcheck-linux-386
¥ crcheck-linux-amd64
¥ crcheck-linux-arm
¥ crcheck-linux-arm64
¥ crcheck-windows-386.exe
¥ crcheck-windows-amd64.exe

On Linux or MacOS also change the attribute to executable (chmod +x crcheck)

4. To verify files in the current directory, simply type crcheck and press Enter. This will compare the checksums of your data and files against the values
stored in a CRCHECK.TXT file (if present).

5. To generate a CRCHECK.TXT file for your files, type crcheck -create > CRCHECK.TXT . This will create a file named CRCHECK.TXT containing the
checksums of all files in the current and sub directories.

Options
CrCheck offers several command-line options to customize its behavior:

e -hash HASH : Specifies the hash algorithm to use (e.g., md5 , shal, sha256). The default is (currently) shai .
e -create : Forces the output of hashes even if a checksum file exists.

e -help or -?:Displays the help message, showing available options and excluded files.

e -verbose : Enable verbose output if file verification fails.

Excluded Files

CrCheck automatically excludes certain files and directories from its verification process. These include:

e crcheck.txt , crcheck.asc, crcheck.crc
e cvs/entries, cvs/root , cvs/repository, cvs/template
® cvs/entries.log, cvs/repository.log, cvs/root.log

e testboot.exe

«« Further files to exclude on user request...

CrCheck.txt file
CrCheck looks for different files that may contain pre-saved filenames, size and hashes. We refer to this as a checksum file.

e «« The following files are supported and checked if they exist:
{"crcheck.txt", "CRCHECK.TXT", "crcheck.txt.asc", "crcheck.crc", "crcheck.asc", "CrCheck.txt", "CrCheck.txt.asc", "CrCheck.crc", "C
after the first find this file is used

o < please note on Linux the file names are case sensitive, on Windows not &

Known issues or bugs?

* Bugs are yet unknown
o Issues: Do to multi platform support all file names are "normalized. This means “/” and “\” as well as upper/lowercase file names are normalized.
Therefore files like e.g. “Makefile” and “makefile” in the same directory are not supported!

Advanced Usage

PGP/GPG Support

<r CrCheck supports PGP and GNUPG signing for enhanced security. You can sign your cRcHECK.TXT file with a PGP/GPG key to ensure its authenticity.
CrCheck will automatically detect the signature. For Windows, we provide the batch file cr2gpg.bat which we use in-house for this task.

To sign the CrCheck.txt file by hand do:

gpg --clear-sign CrCheck.txt ## Windows + Linux, gpg2.exe for cygwin
You should now have a file "CrCheck.txt.asc"
mv CrCheck.txt.asc CrCheck.txt

To verify if the GPG signed file was altered use:
gpg --verify CrCheck.txt

For Windows and Linux we provide the scripts cr2gpg.bat and cr2gpg.sh and some helper tools in the subdirectory “helpers”. If you want to use the
cr2gpg script we recommend to copy the helper tools to a directory where your PATH variable points to.

Batch File Integration

You can integrate CrCheck into batch files to automate file verification tasks. This is particularly useful for repetitive checks or scheduled maintenance
routines.

Error Levels

CrCheck provides error levels (exit codes) to indicate the outcome of the verification process. You can use these error levels in batch files or scripts to
trigger specific actions based on the result.

e 0 :All good.

e ErrCodeFileHash = 1 : File hash mismatch.

e ErrCodeUnknownHash = 2 : Unknown hash algorithm.

e Erroldcrcheck = 3 : Old version of CrCheck detected.

Example Output

c:> crcheck -create -hash sha3 > crcheck. txt

c:> crcheck

CrCheck 5.00 - (c) 1990-2025 by ROSE SWE, Ralph Roth - Antivirus Tool!
Reading checksum file: crcheck.txt

HashType: SHA3

----=[OK]=---- Makefile

----=[OK]=---- build/crcheck-darwin-amd64
----=[OK]=---- build/crcheck-darwin-arme64
----=[OK]=---- build/crcheck-1linux-386

----=[OK]=---- build/crcheck-linux-amd64
----=[OK]=---- build/crcheck-1linux-arm

----=[OK]=---- build/crcheck-linux-armé4
----=[OK]=---- build/crcheck-windows-386.exe
----=[OK]=---- build/crcheck-windows-amd64.exe
----=[OK]=---- cr2gpg.bat

----=[OK]=---- crcheck.go

----=[OK]=---- crcheck.html

----=[OK]=---- crcheck.md

----=[OK]=---- crcheck.pdf

----=[OK]=---- go.mod

----=[OK]=---- go.sum

----=[OK]=---- main.ico

----=[OK]=---- versioninfo.json

% Please note that the file crcheck.txt itself is excluded from being added!

After modifying some files we see that these files were tampered

c:> crcheck

CrCheck 5.00 - (c) 1990-2025 by ROSE SWE, Ralph Roth - Antivirus Tool!
Reading checksum file: crcheck.txt

HashType: SHA3

----=[OK]=---- Makefile

----=[OK]=---- build/crcheck-darwin-amd64
----=[OK]=---- build/crcheck-darwin-armé4
----=[OK]=---- build/crcheck-1inux-386

----=[OK]=---- build/crcheck-linux-amd64
----=[OK]=---- build/crcheck-linux-arm

----=[OK]=---- build/crcheck-linux-armé64
----=[OK]=---- build/crcheck-windows-386.exe
----=[OK]=---- build/crcheck-windows-amd64.exe
----=[OK]=---- cr2gpg.bat

----=[OK]=---- crcheck.go

-=[!FAILED!]=- crcheck.html
-=[!FAILED!]=- crcheck.md

----=[OK]=---- crcheck.pdf
----=[OK]=---- go.mod

----=[OK]=---- go.sum

----=[OK]=---- main.ico

----=[OK]=---- versioninfo.json

«« |If you want to see technical details use the verbose option:

C:> crcheck -verbose

CrCheck 5.00 - (c) 1990-2025 by ROSE SWE, Ralph Roth - Antivirus Tool!
Reading checksum file: crcheck.txt

HashType: SHA3

----=[OK]=---- Makefile

----=[OK]=---- build/crcheck-darwin-amd64
----=[OK]=---- build/crcheck-darwin-armé64
----=[OK]=---- build/crcheck-1linux-386

----=[OK]=---- build/crcheck-1linux-amd64
----=[OK]=---- build/crcheck-linux-arm

----=[OK]=---- build/crcheck-linux-armé4
----=[OK]=---- build/crcheck-windows-386.exe
----=[OK]=---- build/crcheck-windows-amd64.exe
----=[OK]=---- cr2gpg.bat

----=[OK]=---- crcheck.go

-=[IFAILED!]=- crcheck.html (Size: 37368 -> 38790) (HASH=afa89ce2e96d85433ea25da7b707086409b5235441056280a99e95ec826bde39 -> 5a7¢
-=[!FAILED!]=- «crcheck.md (Size: 13337 -> 15257) (HASH=2abdefa29e7f6b71489c0c872abb08cd5b1e3b14279732ff3eb4e7292b5d4581 -> ab1171

----=[OK]=---- crcheck.pdf
----=[OK]=---- go.mod

----=[OK]=---- go.sum

----=[OK]=---- main.ico

----=[OK]=---- versioninfo.json

If you add files to the “distribution” they are also flagged as new files. This is useful if your distributor adds BBS files or ads files to the archive & Hash
algorithm for new files is the same found in the checksum file. Here an example of a GPG signed checksum file:

$ crcheck

CrCheck 5.00 - (c) 1990-2025 by ROSE SWE, Ralph Roth - Antivirus Tool!
Reading checksum file: crcheck.txt.asc

HashType: SHA3

a7ffc6f8bfled76651c14756a061d662f580ff4de43b49fa82d80a4b8018434a 0 1 2 3.test (new)
----=[OK]=---- Makefile

----=[OK]=---- build/crcheck-darwin-amd64
----=[OK]=---- build/crcheck-darwin-armé64
----=[OK]=---- build/crcheck-1inux-386

----=[OK]=---- build/crcheck-1linux-amd64

----=[OK]=---- build/crcheck-linux-arm

----=[OK]=---- build/crcheck-linux-armé4

----=[OK]=---- build/crcheck-windows-386.exe
----=[OK]=---- build/crcheck-windows-amd64.exe
----=[OK]=---- cr2gpg.bat

----=[OK]=---- crcheck.go

-=[!'FAILED!]=- crcheck.html
-=[!'FAILED!]=- <crcheck.md
-=[!'FAILED!]=- crcheck.pdf

9dcOce7c7a735358403062cf5aeedl2ac74cedcasbca7ee926980895894d3ac67 2272 crcheck.txt.asc (new)
----=[OK]=---- go.mod

----=[OK]=---- go.sum

----=[OK]=---- main.ico

----=[OK]=---- versioninfo.json

License Terms for CrCheck

CrCheck is offered under a user-friendly and flexible licensing model that balances accessibility with the protection of intellectual property. Below are
the detailed licensing terms and usage conditions:

Licensing Overview

Freeware for Non-Commercial Use

» Use Case 1 (Verifying files for tampering or modification):

o Free to use for personal, educational, or non-commercial purposes.

o I|deal for ensuring the integrity of files downloaded or shared with checksum files (e.g., verifying software from ROSE SWE).
* Use Case 2 (Creating checksum files for personal data validation):

o Also free for non-commercial purposes.

o Useful for individuals maintaining data integrity, such as securing files in personal cloud drives or backups.

Commercial Use

» Use Case 1 (File verification):
o Free for commercial purposes.
o Companies can use CrCheck to validate the integrity of distributed files without requiring a license (e.g., check the integrity of unpacked archives
from ROSE SWE).
+ Use Case 2 (Checksum file creation for internal or operational data validation):
o Requires a commercial license.
o Businesses employing CrCheck for creating checksum files (e.g., for internal compliance, auditing, or protecting sensitive operational data) must

acquire a license to use this feature legally.

Summary of Licensing Model

Use Case Non-Commercial Commercial
Verify files for tampering Freeware Freeware
Create checksum files/distributing checksum files Freeware Requires a license

Registered vs. Unregistered Versions

» The functional differences between registered and unregistered versions are minimal, apart from the “beg remark” in the unregistered version.
» Registering CrCheck grants access to the latest available version, ensuring you have all recent updates and improvements.
o To register, users need to complete the REGISTER.TXT form and submit it via mail or email.

Intellectual Property and Usage Restrictions
By using CrCheck, you agree to the following terms:

1. Respect for Copyright: Users must respect the intellectual property rights of the program’s creators.

2. Prohibition of Code Modification: Modifying the program code or attempting to decompile the software is strictly prohibited.

3. No Circumvention: Efforts to bypass the license protection mechanisms or use the software without an appropriate license are considered a violation
of the terms of use.

Violations, such as reverse engineering or unauthorized use, constitute a breach of the license agreement and may lead to legal consequences.
This licensing approach ensures that CrCheck remains accessible for various users while maintaining clear boundaries to protect the developers’ rights

and support sustainable development.

Conclusion

CrCheck is a valuable tool for anyone concerned about file integrity and security. Its comprehensive features, user-friendly interface, and flexible options
make it a versatile solution for individuals, organizations, and developers alike.

History

w/
Version Date Changes
®
5.16 26.04.2025 & Non user visible enhancements. Fix of cr2gpg.bat
5.14/5.15 25.03.2025 %4 Small internal enhancements. Help screen now fits into Windows 80 char terminals
5.13 17.02.2025 4y More small bugfixes (Windows) and enhancements, tested with latest compiler
5.12 09.02.2025 & Small enhancements like thousand separator. More fixes for compatibility between Linux and Windows
Added number of files checked and total size checked. Added RIPEMD-160, BLAKE2 and BLAKE3 hash
5.10 08.02.2025 & .
algorithm
5.05 03.02.2025 & First working multi platform version. Beside the HASH used, now also the original OS and architecture is added
5.04 26.01.2025 4> Various small enhancements, trying to get the Windows version bugfree
The filename is now enclosed by pipe characters “|” so we can even handle filenames that start with a tab or
5.01 30.12.2024 4y T
space. Missing files are now also reported.
5.00 Oct. 2024 A Initial port of CrCheck 4.80 to Multi Platform
Legend

% Nonpublic release
& Published release

Overview of Hash Algorithms

Hash algorithms are essential in computer science and used for various applications such as data integrity verification, checksums, and cryptographic
security. This chapter provides an overview of several popular hash algorithms, including Adler32, Castagnoli, CRC32, MD5, SHA-1, SHA-2, SHA-3,
RIPEMD-160, Blake and xxHash, along with a comparison of their performance.

Hash Algorithms supported by CrCheck

<~ Additional HASH Algorithms can be added on user request.

In bold are the keyword you can use for the option -hash HASH_ALGORITHM , e.g. CRC32 and IEEE are the same hash algorithm.

1. Adler32 (32 bit)

Adler32/Adler is a checksum algorithm that combines the speed of the Fletcher algorithm with the simplicity of the checksum. It is primarily used in
applications like zlib for data compression. While it is fast, it is not cryptographically secure and is mainly used for error-checking.

2. Castagnoli (32 bit)

Castagnoli/Cast is a variant of the CRC32 (Cyclic Redundancy Check) algorithm, specifically designed to improve error detection capabilities. It is often
used in networking and storage applications. Like Adler32, it is not suitable for cryptographic purposes.

3. CRC32 (IEEE) (32 bit)

CRC32/IEEE is a widely used checksum algorithm that produces a 32-bit hash value. It is commonly used in network communications and file integrity
checks. The IEEE variant is standardized and provides a good balance between speed and error detection.

4. MD5 (128 bit)

MD5 (Message-Digest Algorithm 5) is a widely used cryptographic hash function that produces a 128-bit hash value. It is fast and efficient but has known
vulnerabilities to collision attacks, making it unsuitable for security-sensitive applications.

5. SHA-1 (SHA-160, 160 bits)

SHA1/SHA160 is a cryptographic hash function that produces a 160-bit hash value. While it was widely used for digital signatures and certificates, it is now
considered weak due to vulnerabilities that allow for collision attacks.

6. SHA-2 (SHA-256, SHA-512 - 256 or 512 bits)

SHA2/SHA256/SHA512/SHA2-512 is a family of cryptographic hash functions that includes SHA-256 and SHA-512. These algorithms are more secure
than MD5 and SHA-1, providing resistance against collision and pre-image attacks. SHA-256 produces a 256-bit hash, while SHA-512 produces a 512-bit
hash.

7. SHA-3 (256 bit implementation)

SHA3/SHA3-256 is the latest member of the Secure Hash Algorithm family, designed to provide a higher level of security and performance. It uses a
different construction method (Keccak) compared to SHA-2 and is considered highly secure.

8. xxHash (64 bit)

xxHash/xxh64 is a non-cryptographic hash function known for its exceptional speed and efficiency. It operates at RAM speed limits and is suitable for
applications requiring fast hashing without the need for cryptographic security. Variants include xxHash32 and xxHash64, with xxHash3 being the latest
and fastest. See also
https://chromium.googlesource.com/external/github.com/Cyan4973/xxHash/+/375d401bd4a4eba07ee75d6e627546052cb5b0ec/README.md

9. RIPEMD-160 (160 bit)

RIPEMD-160/RMD160 is a cryptographic hash function that produces a 160-bit (20-byte) hash value. It was developed as part of the RIPEMD family by
Hans Dobbertin, Antoon Bosselaers, and Bart Preneel in 1996. RIPEMD-160 is designed for secure message integrity verification and is similar in structure
to MD4 and MD5 but with added security enhancements. While it is less common than SHA-1 or SHA-2, it is still used in some blockchain applications and
cryptographic systems.

10. BLAKE2 and BLAKE3 (256 bit)

BLAKE2 is a cryptographic hash function that serves as an improved version of the original BLAKE algorithm. It was designed to be faster than MD5, SHA-
1, and SHA-2 while maintaining a comparable level of security. BLAKE2 comes in two primary variants:

+ BLAKE2b/BLAKE2b-256: Optimized for 64-bit platforms, typically producing a 256-bit hash (among other possible output lengths).
* BLAKE2s/BLAKE2s-256: Optimized for 32-bit platforms, also configured here to produce a 256-bit output.

BLAKE3/BLAKE3-256 is a more recent hash function that builds on the design principles of BLAKE2 but further enhances speed, simplicity, and
parallelism. It is designed to offer improved performance without compromising security, and in our context, it also produces a 256-bit hash output.

11. BLAKE3-128 (128 bit)

BLAKE3-128 is a variant of the BLAKE3 hash function configured to produce a 128-bit (16-byte) output. BLAKES itself is known for its speed, parallelism,
and robust security properties, and the 128-bit version offers these same benefits in terms of performance. However, by reducing the output size, the
cryptographic strength is proportionally lowered:

» Security: With a 128-bit digest, the collision resistance and pre-image resistance are less robust compared to the default 256-bit configuration. While
this may be adequate for non-critical applications or situations where a shorter checksum is sufficient, it is generally not recommended for high-
security contexts where collision resistance is paramount.

* Performance: Like its 256-bit counterpart, BLAKE3-128 benefits from the algorithm’s inherent speed and efficiency. The reduced output size might
offer a marginal performance improvement, but the primary advantage remains the exceptional throughput and parallelism of BLAKES.

+ Usage Considerations: Choosing BLAKE3-128 can be a trade-off between digest size and security level. For applications where minimizing storage
or bandwidth is crucial and the security requirements are moderate, BLAKE3-128 can be an attractive option. However, for most cryptographic
purposes, the 256-bit version is recommended to ensure a higher level of security.

This variant maintains the design simplicity and speed of BLAKE3 while offering a shorter hash output that might be suitable for specific use cases with
relaxed security demands.

https://chromium.googlesource.com/external/github.com/Cyan4973/xxHash/+/375d401bd4a4eba07ee75d6e627546052cb5b0ec/README.md

Additional Cryptographic Hash Overviews

Whirlpool

e Produces a 512-bit hash and is resistant to many common attacks.
o Less commonly used than SHA-2 or BLAKEZ2 but remains a strong alternative.

Tiger
+ Designed for 64-bit systems and known for its speed, but it has been largely replaced by stronger algorithms.

Skein

« Aflexible hash function that supports variable-length outputs, developed for the SHA-3 competition (though it lost to Keccak).

Performance Comparison

Summary Table of Hash Algorithms

Here’s a comparative summary of various hash algorithms (not all implemented in CrCheck), including both cryptographic and non-cryptographic options,
focusing on their speed, bit output, and security.

Algorithm Speed Bit Output Security Level
xxHash Extremely fast 32/64 bits (XXH3) Non-cryptographic
titha Very fast 32/64 bits Non-cryptographic
MurmurHash Fast 32/128 bits Non-cryptographic
GxHash Very fast Variable (32 bits+) Non-cryptographic
MD5 Fast 128 bits Insecure
SHA-1 Moderate 160 bits Insecure
RIPEMD-160 (R/IPE160) Moderate 160 bits Secure
SHA-2 Moderate 224/256/384/512 bits Secure
SHA-3 Moderate 224/256/384/512 bits Secure
BLAKE2 Fast 256/512 bits Secure
BLAKE3 Very fast 256 bits Secure
Whirlpool Moderate 512 bits Secure
Tiger Fast 192 bits Secure (legacy)
Skein Moderate Variable (256-512 bits) Secure
CRC32 Very fast 32 bits Non-cryptographic
Adler32 Very fast 32 bits Non-cryptographic
Castagnoli Very fast 32 bits Non-cryptographic

Hash Algorithms - Key Points

o Speed: xxHash, t1ha, MurmurHash, GxHash, CRC32, and Adler32 are the fastest. BLAKES3 is the fastest secure cryptographic hash.

« Bit Output: Cryptographic hashes like SHA-2, SHA-3, RIPEMD-160, BLAKE2, BLAKE3, Whirlpool, Tiger, and Skein produce larger outputs,

improving security.
* Security:

o Insecure: MD5 and SHA-1 are vulnerable to collisions and should not be used.

o Secure: SHA-2, SHA-3, BLAKE2, BLAKE3, RIPEMD-160, Whirlpool, and Skein are secure cryptographic options.
o Legacy Secure: Tiger was once used in cryptographic applications but is now mostly outdated.
o Non-cryptographic: xxHash, CRC32, Adler32, and Castagnoli are designed for speed, not security.

Performance Ranking by Speed
When comparing speed, xxHash is the fastest, operating at near RAM speed. Below is a general ranking:

. xxHash — Fastest, ideal for non-cryptographic use.

. BLAKES3 - Fastest cryptographic hash, excellent for modern applications.
. Adler32 — Fast checksum algorithm.

. Castagnoli — Fast CRC variant.

. CRC32 - Fast, widely used for checksums.

. MD5 - Fast but insecure.

. SHA-1 — Slower than MD5, with known vulnerabilities.

. RIPEMD-160 — Moderate speed, more secure than SHA-1.

. SHA-2 (SHA-256, SHA-512) — Slower but more secure.

10. SHA-3 — Generally slower than SHA-2 but provides enhanced security.
11. Whirlpool — 512-bit output, moderate speed.

0 N O OB~ WODN -

[<e]

12. Skein — Secure but not widely adopted.

Reference: Empty Hashes

Below is a table that lists each hash algorithm alongside its hash value for an empty file (i.e. an empty input, file size zero):

Hash

. Hash Value
Algorithm
Adler32 00000001
BLAKE2b-
255 0e5751c026e543b2e8ab2eb06099daa1c9e8b7526c5c9b9a32bfed7ac92b48d1
BLAKE3 af1349b9d1a7de16e5a26e0ef8a5d2a0e9b78b12d44e0c155f3b8a%e7dfdOf7f
CRC32,
00000000

IEEE
CRC32

. 00000000
(Castagnoli)
MD4 31d6cfe0d16ae931b73¢c59d7e0c089c0
MD5 d41d8cd98f00b204e9800998ecf8427¢e

RIPEMD160 = 9c1185a5c5e9fc54612808977ee8f548b2258d31

SHA-1 da39a3ee5e6b4b0d3255bfef95601890afd80709

SHA-256 e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855

SHA-384 38b060a751ac96384cd9327eb1b1e36a21fdb71114be07434c0cc7bf63f6e1da274edebfe76f65fbd51ad2f14898b95b

SHA-512 cf83e1357eefb8bdf1542850d66d8007d620e4050b5715dc83f4a921d36ce9ce4 7d0d13c5d85f2b0ff8318d2877eec2f63b931bd47417a81a5

SHA3-224 6b4e03423667dbb73b6e15454f0e6b22a2e0371be0b4d7eaasbd30f3e

SHA3-256 a7ffc6f8bf1ed76651c14756a061e667b6e56dd99a0ac2a0f2bb6dbd7f6cdbOd

SHA3-384 0c63a75b845e4f7d01107d852e4c2485c51a50aaaa94fc824d7a7b17d5¢32c6e9a286dcddb9acdcO0asb6¢

SHA3-512 a69f73cca23a9ac5c8b567dc185a756e97c982164fe25859e0d1dccf8e6d0a14d6e2c85ed87f7f1d9c9c2ea2c1061fa1c86f2d0a3e10f8addfet

XXH32 02cc5d05

Hash
Algorithm

Hash Value

xxHash (64
bit)

0ef46db3751d8e999

Each value is computed from hashing an empty input. These constants are defined by each algorithm and can be used as test vectors to verify correct

implementations.

End of documentation

